

Dynamically equivalent disjunctive and linear Boolean networks

Lilian Salinas Universidad de Concepción joint work with: Julio Aracena, Luis Cabrera-Crot, Adrien Richard, Benjamín Schleef

June 24, 2025

- **1** Definitons and notation
- **2** Preliminary results
- **3** General problem
- **With a given schedule** *s*
- **5** With a given function *h*

1. A Boolean network with n components is a discrete dynamical system usually defined by a global transition function:

$$f: \{0,1\}^n \to \{0,1\}^n, \ x \to f(x) = (f_1(x), \dots, f_n(x)),$$

where each function $f_u: \{0,1\}^n \to \{0,1\}$ associated to the component u is called *local activation function*.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Boolean network

1. A Boolean network with n components is a discrete dynamical system usually defined by a global transition function:

$$f: \{0,1\}^n \to \{0,1\}^n, \ x \to f(x) = (f_1(x), \dots, f_n(x)),$$

where each function $f_u:\{0,1\}^n\to\{0,1\}$ associated to the component u is called *local activation function*.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

June 24, 2025

3 / 27

2. Any vector $x = (x_1, \ldots, x_n) \in \{0, 1\}^n$ is called a *state* of the network f with local state x_u on each component u.

Boolean network

1. A Boolean network with n components is a discrete dynamical system usually defined by a global transition function:

$$f: \{0,1\}^n \to \{0,1\}^n, \ x \to f(x) = (f_1(x), \dots, f_n(x)),$$

where each function $f_u:\{0,1\}^n\to\{0,1\}$ associated to the component u is called *local activation function*.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

June 24, 2025

3 / 27

2. Any vector $x = (x_1, \ldots, x_n) \in \{0, 1\}^n$ is called a *state* of the network f with local state x_u on each component u.

Interaction digraph

Definition

We define the interaction graph of a Boolean network $f: \{0,1\}^n \rightarrow \{0,1\}^n$, denoted by G(f) = ([n], A(f)), as:

$$[n] = \{1, \dots, n\},\$$

$$A(f) = \{(u, v) \in [n] \times [n] : (\exists x \in \{0, 1\}^n, f_v(x) \neq f_v(x^{\neg u}))\}$$

where $x_v^{\neg u} = x_v \iff u \neq v$. Also, for each $u \in [n]$:

$$\begin{split} N_f^-(u) &= \{ v \in [n] : (v, u) \in A(f) \} \\ N_f^+(u) &= \{ v \in [n] : (u, v) \in A(f) \} \end{split}$$

 $f_1(x) = \neg x_2 \land x_5$ $f_2(x) = (x_1 \land x_3) \lor (x_5 \land \neg x_3)$ $f_3(x) = (\neg x_1 \lor \neg x_5) \land x_3 \land x_4$ $f_4(x) = (x_4 \land x_3) \lor (x_5 \land \neg x_3)$ $f_5(x) = x_4$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ ● ●

An update schedule is a function $s : \{1, ..., n\} \rightarrow \{1, ..., n\}$, where there exists $m \in \{1, ..., n\}$ such that $s(\{1, ..., n\}) = \{1, ..., m\}$. Using this definition, we can write $s = B_1 \cdots B_m$, where each set B_j is a

block of s, and $B_j = s^{-1}(\{j\}) = \{u \in \{1, \dots, n\} : s(u) = j\}.$

Definition

Let $f : \{0,1\}^n \to \{0,1\}^n$ be a Boolean network, $x^t = (x_1^t, \ldots, x_n^t) \in \{0,1\}^n$ a state and $s = B_1, B_2, \ldots, B_m$ a block-sequential update schedule. The dynamical behavior of f updated according to s is given by:

$$\forall v \in B_1, \qquad x_v^{t+1} = f_v(x^t).$$

$$\forall v \notin B_1, \qquad x_v^{t+1} = f_v(x_u^{t+1} : s(u) < s(v); x_u^t : s(u) \ge s(v))$$

$$(2)$$

Definition

Let $f : \{0,1\}^n \to \{0,1\}^n$ be a Boolean network, $x^t = (x_1^t, \ldots, x_n^t) \in \{0,1\}^n$ a state and $s = B_1, B_2, \ldots, B_m$ a block-sequential update schedule. The dynamical behavior of f updated according to s is given by:

$$\forall v \in B_1, \qquad x_v^{t+1} = f_v(x^t). \tag{1}$$

$$\forall v \notin B_1, \qquad x_v^{t+1} = f_v(x_u^{t+1} : s(u) < s(v); x_u^t : s(u) \ge s(v))$$
 (2)

This is equivalent to applying a function f^s to x:

$$x^{t+1} = f^s(x^t),$$

where f^s is defined by:

$$\forall v \in B_1, \qquad f^s(x)_v = f_v(x).$$

$$\forall v \notin B_1, \qquad f^s(x)_v = f_v(f_u^s(x) : s(u) < s(v); x_u : s(u) \ge s(v))$$

$$(4)_{out}$$

Definition

Let $f : \{0,1\}^n \to \{0,1\}^n$ be a Boolean network, $x^t = (x_1^t, \ldots, x_n^t) \in \{0,1\}^n$ a state and $s = B_1, B_2, \ldots, B_m$ a block-sequential update schedule. The dynamical behavior of f updated according to s is given by:

$$\forall v \in B_1, \qquad x_v^{t+1} = f_v(x^t). \tag{1}$$

$$\forall v \notin B_1, \qquad x_v^{t+1} = f_v(x_u^{t+1} : s(u) < s(v); x_u^t : s(u) \ge s(v))$$
 (2)

It is easy to prove that f^s is equivalent to:

$$f^s = f^{B_m} \circ f^{B_{m-1}} \circ \dots \circ f^{B_2} \circ f^{B_1}$$

with $f^{B_i}: \{0,1\}^n \to \{0,1\}^n$ given by:

$$\forall x \in \{0,1\}^n, \quad f_v^{B_i}(x) = \begin{cases} x_v & \text{if } v \notin B_i \\ f_v(x) & \text{if } v \in B_i. \text{ for } v \in B_i.$$

Dynamical behavior of a Boolean network

Figure: (a) f and an update schedule s (b) The parallel digraph $G_P(f, s)$.

LSA

・ロト ・ 一 ・ ・ ・ ・

Dynamical behavior of a Boolean network

Figure: (a) f and an update schedule s (c) The effective network f^s .

LSA

Labelled digraph

Let $f : \{0,1\}^n \to \{0,1\}^n$ be a Boolean network and s an update schedule. We define the labeling function $lab_s : A \to \{\ominus, \oplus\}$ in the following way:

$$\forall (u, v) \in A(f), \quad \text{lab}_s(u, v) = \begin{cases} \bigoplus & \text{if } s(u) \ge s(v) \\ \ominus & \text{if } s(u) < s(v) \end{cases}$$

Figure: The associated digraph to f labeled by the function lab_s , with $s = \{1\} \{2\} \{3\} \{4\}$

Equivalence relation

Given $f : \{0,1\}^n \to \{0,1\}^n$ a Boolean network, we define the following equivalence relation between updates schedule s and s':

$$s \sim_f s' \iff (G(f), \operatorname{lab}_s) = (G(f), \operatorname{lab}_{s'}).$$

We denote $[s]_f$ the equivalence class of s induced by \sim_f . It is kown that:

$$s \sim_f s' \implies f^s = f^{s'}.$$
 (3)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Dynamically equivalent Boolean network problem

Definition

Let $f, h: \{0, 1\}^n \to \{0, 1\}^n$ be two Boolean networks and s an update schedule. We say that (h, s) is dynamically equivalent to f if $h^s = f$. Moreover, if $h \neq f$, or h = f and $s \not\sim_f s_p$, we say that (h, s) and f are non-trivially dynamically equivalent.

Dynamically equivalent networks problem (DEN problem) Input: A Boolean network f.

Question: does there exists a Boolean network h and an update schedule s, such that (h, s) is non-trivially dynamically equivalent to f?

Theorem

If there exists a solution to DEN problem then there exists a solution to DEN problem with a block-sequential update schedule with two blocks.

< ロ > < 同 > < 回 > < 回 > < □ > <

Theorem

If there exists a solution to DEN problem then there exists a solution to DEN problem with a block-sequential update schedule with two blocks.

Notice that:

$$f^s = \underbrace{f^{B_k} \circ f^{B_{k-1}}}_{f^{B_k \cup B_{k-1}}} \circ f^{B_{k-2}} \circ \dots \circ f^{B_1}$$

June 24, 2025

10 / 27

Theorem

If there exists a solution to DEN problem then there exists a solution to DEN problem with a block-sequential update schedule with two blocks.

Notice that:

$$f^s = \underbrace{f^{B_k} \circ f^{B_{k-1}}}_{f^{B_k \cup B_{k-1}}} \circ f^{B_{k-2}} \circ \dots \circ f^{B_1}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

June 24, 2025

10 / 27

Theorem

DEN is NP-Hard.

Disjunctive and linear Boolean networks

Definition

 $\begin{array}{l} \text{Given } f: \{0,1\}^n \rightarrow \{0,1\}^n \text{ a Boolean network, } f \text{ is called a disjunctive} \\ \text{Boolean network if: } \forall u \in [n], \ f_u(x) = \bigvee_{v \in N_f^-(u)} x_v \\ \text{or, equivalently: } \forall u \in [n], \ f_u(x) = 1 \iff \left| \left\{ v \in N_f^-(u) : x_v = 1 \right\} \right| \geq 1. \end{array}$

LSA

June 24, 2025 11 / 27

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● ● ● ●

Disjunctive and linear Boolean networks

Definition

 $\begin{array}{l} \text{Given } f: \{0,1\}^n \rightarrow \{0,1\}^n \text{ a Boolean network, } f \text{ is called a disjunctive} \\ \text{Boolean network if: } \forall u \in [n], \ f_u(x) = \bigvee_{v \in N_f^-(u)} x_v \\ \text{or, equivalently: } \forall u \in [n], \ f_u(x) = 1 \iff \left| \left\{ v \in N_f^-(u) : x_v = 1 \right\} \right| \geqslant 1. \end{array}$

Definition

Given $f : \{0,1\}^n \to \{0,1\}^n$ a Boolean network, f is called a linear Boolean network if: $\forall u \in [n], f_u(x) = \bigoplus_{v \in N_f^-(u)} x_v$, where \oplus is the sum modulo 2

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ ● ●

June 24, 2025 11 / 27

or, equivalently:

$$\forall u \in [n], \ f_u(x) = 1 \iff \left| \left\{ v \in N_f^-(u) : x_v = 1 \right\} \right| \text{ is odd.}$$

Transitive property

Given $h, f: \{0, 1\}^n \to \{0, 1\}^n$ two disjunctive Boolean networks and s an update schedule such that $h^s = f$. then:

$$(u,v) \in A(f) \iff \begin{cases} ((u,v) \in A(h) \land s(u) \ge s(v)) & \lor \\ (\exists w \in N_h^-(v), s(w) < s(v) \land (u,w) \in A(f)) \end{cases} \lor$$

Lemma

Let $h, f : \{0, 1\}^n \to \{0, 1\}^n$ be two disjunctive Boolean networks and s an update schedule such that $h^s = f$. Then, for $u, v \in [n]$:

$$[(u,v) \in A(h) \land \operatorname{lab}_s(u,v) = \ominus] \Longrightarrow N_f^-(u) \subseteq N_f^-(v).$$

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● ● ● ●

Solutions with one negative arc

Proposition

Let $f : \{0,1\}^n \to \{0,1\}^n$ be a disjunctive Boolean network. There exists a disjunctive Boolean network h and an update schedule s, such that (h,s) is non-trivially dynamically equivalent to f and with only one negative arc $(u,v) \in A(h)$ if and only if the following conditions are satisfied:

June 24, 2025

13 / 27

- **1.** $N_{f}^{-}(u) \subseteq N_{f}^{-}(v)$,
- 2. $u \notin N_f^-(v) \setminus N_f^-(u)$,
- 3. For every vertex $w \in N_f^-(v) \setminus N_f^-(u)$, it does not exist a path from u to w in G(f) v.

Solutions with one negative arc

Proposition

Let $f : \{0,1\}^n \to \{0,1\}^n$ be a disjunctive Boolean network. There exists a disjunctive Boolean network h and an update schedule s, such that (h,s) is non-trivially dynamically equivalent to f and with only one negative arc $(u,v) \in A(h)$ if and only if the following conditions are satisfied:

- **1.** $N_{f}^{-}(u) \subseteq N_{f}^{-}(v)$,
- 2. $u \notin N_f^-(v) \setminus N_f^-(u)$,
- 3. For every vertex $w \in N_f^-(v) \setminus N_f^-(u)$, it does not exist a path from u to w in G(f) v.

Corollary

Let $f: \{0,1\}^n \to \{0,1\}^n$ be a disjunctive Boolean network. If there exist $u, v \in [n]$ such that $N_f^-(u) = N_f^-(v)$, then there exists a disjunctive Boolean network h and an update schedule s such that (h,s) is non-trivially dynamically equivalent to f.

◆□ ▶ ◆昼 ▶ ◆臣 ▶ ◆ 国 ■ ● ● ●

$$A^{\ominus}(f) = \{(u,v) \in [n] \times [n] : u \neq v \land N_f^-(u) \subseteq N_f^-(v)\}.$$

Algoritmo: $\mathcal{G}_{lab}(f, A^-)$

Input: A disjunctive Boolean network $f: \{0,1\}^n \to \{0,1\}^n$ and a subset $A^- \subseteq A^{\ominus}(f)$ of G = G(f) such that $G[A^-]$ is acyclic.

Output: A labeled digraph $G[A^-, A^+]$.

$$A^+ \leftarrow \{(u,v) \in A(f) : \forall w \in N_f^+(u), (w,v) \notin A^-)\};$$

2 if
$$(A^+)^* \cap A^- = \emptyset$$
 then return $G([n], A^+ \cup A^-)$;
3 else return $\mathcal{G}_{\text{lab}}(f, A^- \setminus (A^+)^*)$;

イロト 不得下 イヨト イヨト 二日

June 24, 2025

14 / 27

$$A^{\ominus}(f) = \{(u,v) \in [n] \times [n] : u \neq v \land N_f^-(u) \subseteq N_f^-(v)\}.$$

Algoritmo: $\mathcal{G}_{lab}(f, A^{-})$

Input: A disjunctive Boolean network $f: \{0,1\}^n \rightarrow \{0,1\}^n$ and a subset $A^{-} \subseteq A^{\ominus}(f)$ of G = G(f) such that $G[A^{-}]$ is acyclic.

Output: A labeled digraph $G[A^-, A^+]$.

$$A^+ \leftarrow \{(u,v) \in A(f) : \forall w \in N_f^+(u), (w,v) \notin A^-)\};$$

2 if
$$(A^+)^* \cap A^- = \emptyset$$
 then return $G([n], A^+ \cup A^-)$;
3 else return $\mathcal{G}_{\text{lab}}(f, A^- \setminus (A^+)^*)$;

3 else return
$$\mathcal{G}_{lab}(f, A^- \setminus (A^+)^*)$$

$$A^{\ominus}(f) = \{(u,v) \in [n] \times [n] : u \neq v \land N_f^-(u) \subseteq N_f^-(v)\}.$$

Algoritmo: $\mathcal{G}_{lab}(f, A^{-})$

Input: A disjunctive Boolean network $f: \{0,1\}^n \rightarrow \{0,1\}^n$ and a subset $A^{-} \subseteq A^{\ominus}(f)$ of G = G(f) such that $G[A^{-}]$ is acyclic.

Output: A labeled digraph $G[A^-, A^+]$.

$$A^+ \leftarrow \{(u,v) \in A(f) : \forall w \in N_f^+(u), (w,v) \notin A^-)\};$$

2 if
$$(A^+)^* \cap A^- = \emptyset$$
 then return $G([n], A^+ \cup A^-)$;
3 else return $\mathcal{G}_{\text{lab}}(f, A^- \setminus (A^+)^*)$;

3 else return
$$\mathcal{G}_{lab}(f, A^- \setminus (A^+)^*)$$

$$A^{\ominus}(f) = \{(u,v) \in [n] \times [n] : u \neq v \land N_f^-(u) \subseteq N_f^-(v)\}.$$

Algoritmo: $\mathcal{G}_{lab}(f, A^{-})$

Input: A disjunctive Boolean network $f: \{0,1\}^n \rightarrow \{0,1\}^n$ and a subset $A^{-} \subseteq A^{\ominus}(f)$ of G = G(f) such that $G[A^{-}]$ is acyclic.

Output: A labeled digraph $G[A^-, A^+]$.

$$A^+ \leftarrow \{(u,v) \in A(f) : \forall w \in N_f^+(u), (w,v) \notin A^-)\};$$

2 if
$$(A^+)^* \cap A^- = \emptyset$$
 then return $G([n], A^+ \cup A^-)$;
3 else return $\mathcal{G}_{\text{lab}}(f, A^- \setminus (A^+)^*)$;

3 else return
$$\mathcal{G}_{lab}(f, A \setminus (A^+)^*)$$

$$A^{\ominus}(f) = \{(u,v) \in [n] \times [n] : u \neq v \land N_f^-(u) \subseteq N_f^-(v)\}.$$

Algoritmo: $\mathcal{G}_{lab}(f, A^-)$

Input: A disjunctive Boolean network $f: \{0,1\}^n \to \{0,1\}^n$ and a subset $A^- \subseteq A^{\ominus}(f)$ of G = G(f) such that $G[A^-]$ is acyclic.

Output: A labeled digraph $G[A^-, A^+]$.

$$A^+ \leftarrow \{(u,v) \in A(f) : \forall w \in N_f^+(u), (w,v) \notin A^-)\};$$

2 if $(A^+)^* \cap A^- = \emptyset$ then return $G([n], A^+ \cup A^-)$; 2 also return $G_{n+1}(A^+)^*$:

3 else return $\mathcal{G}_{lab}(f, A^- \setminus (A^+)^*);$

$$A^{\ominus}(f) = \{(u,v) \in [n] \times [n] : u \neq v \land N_f^-(u) \subseteq N_f^-(v)\}.$$

Algoritmo: $\mathcal{G}_{lab}(f, A^-)$

Input: A disjunctive Boolean network $f: \{0,1\}^n \to \{0,1\}^n$ and a subset $A^- \subseteq A^{\ominus}(f)$ of G = G(f) such that $G[A^-]$ is acyclic.

Output: A labeled digraph $G[A^-, A^+]$.

$$A^+ \leftarrow \{(u,v) \in A(f) : \forall w \in N_f^+(u), (w,v) \notin A^-)\};$$

2 if
$$(A^+)^* \cap A^- = \emptyset$$
 then return $G([n], A^+ \cup A^-)$;
2 clear return $G_{n+1}(A^+)^*$):

3 else return $\mathcal{G}_{lab}(f, A^- \setminus (A^+)^*);$

Admissible partition

Definition

Let (G, lab) be a labeled digraph. A partition $\{V_1, V_2\}$ of [n] is said to be admissible if satisfies the following conditions:

1.
$$\exists (u, v) \in A(G), u \in V_1 \land v \in V_2$$
,

$$\textbf{2.} \hspace{0.2cm} \forall (u,v) \in A(G), u \in V_1 \land v \in V_2 \implies \text{lab}(u,v) = \ominus,$$

3.
$$\forall (u,v) \in A(G), u, v \in V_2 \implies \operatorname{lab}(u,v) = \bigoplus.$$

Admissible partition

Definition

Let (G, lab) be a labeled digraph. A partition $\{V_1, V_2\}$ of [n] is said to be admissible if satisfies the following conditions:

1.
$$\exists (u, v) \in A(G), u \in V_1 \land v \in V_2$$
,

2.
$$\forall (u,v) \in A(G), u \in V_1 \land v \in V_2 \implies \operatorname{lab}(u,v) = \ominus$$
,

3.
$$\forall (u,v) \in A(G), u, v \in V_2 \implies \text{lab}(u,v) = \bigoplus$$
.

Lemma

Let $f : \{0,1\}^n \to \{0,1\}^n$ be a disjunctive Boolean network and $\{V_1, V_2\}$ an admissible partition of $\mathcal{G}_{lab}(f, A^{\ominus}(f))$. If we define $A^- = \{(u, v) \in A(G) : u \in V_1 \land v \in V_2\}$, where G is the digraph of the resulting labeled digraph, then $\mathcal{G}_{lab}(f, A^-)$ is an update digraph and $G_P(\mathcal{G}_{lab}(f, A^-)) = G(f)$.

Algorithm

Algoritmo: AdmissiblePartition(G, lab)**Input:** A labeled digraph (G, lab). **Output:** A partition $\{V_1, V_2\}$ of V(G). 1 $G^{\oplus} \leftarrow \text{lab}^{\oplus}[(G, \text{lab})]$: 2 $(\hat{V}, \hat{A}) \leftarrow \text{ComponentDigraph}(G^{\oplus});$ 3 $Q \leftarrow \{G_i \in \hat{V} : \nexists G_i \in \hat{V}, (G_i, G_i) \in \hat{A}\};$ // initial components 4 $v^* \leftarrow \text{Null}$: 5 while $v^* =$ Null do 6 $G_q \leftarrow \text{first element of } Q$: 7 if $\exists u \in G_q \land \exists (w, u) \in A(G), lab(w, u) = \ominus$ then $v^* \leftarrow u$; 8 else $Q \leftarrow Q \cup \{G_i \in \hat{V} : (G_q, G_i) \in \hat{A}\};$ 9 $V_2 \leftarrow \{v \in V(G): \exists a \text{ path in } G^{\oplus} \text{ from } v \text{ to some vertex in the same component of } \}$ v^* }: 0 $V_1 \leftarrow V(G) \setminus V_2;$ 1 return $\{V_1, V_2\}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ◆ ● ◆ ● ◆ ● ◆ ●

June 24, 2025 16 / 27

Algorithm for D-DEN Problem

Algoritmo: D-DENPSolve(f)

Input: A disjunctive Boolean network $f: \{0, 1\}^n \to \{0, 1\}^n$. **Output:** (G, lab) an update digraph such that $G_P(G, lab) = G(f)$ if there exists a solution of the D-DEN problem with instance f, or Null otherwise. 1 if $A^{\ominus}(f)$ has a cycle then Let u and v be two vertices such that $N_f^-(u) = N_f^-(v)$; 2 return $G[\{(u, v)\}, A(f) \setminus \{(x, v) : x \in N_f^-(v)\}]$ 3 4 else $(G, \text{lab}) \leftarrow \mathcal{G}_{\text{lab}}(f, A^{\ominus}(f));$ 5 6 if $lab^{\ominus}(G, lab) = \emptyset$ then return Null; 7 if (G, lab) is update then return (G, lab); 8 $\{V_1, V_2\} \leftarrow \text{AdmissiblePartition}(G, \text{lab});$ 9 $A^- \leftarrow \{(u, v) \in A(G, \text{lab}) : u \in V_1 \land v \in V_2\};$ 0 return $\mathcal{G}_{lab}(f, A^-)$;

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● ● ● ●

June 24, 2025 17 / 27

Example of the algorithm

Transitive property for linear Boolean network

Lemma

Let $f, h: \{0,1\}^n \to \{0,1\}^n$ be two linear Boolean networks and $s = B_1 \dots B_m$ a block sequential update schedule such that $h^s = f$. Then, given $k \in \{1, \dots, m-1\}$, it follows,

$$M(h)^{B_1} = M(f)^{B_1}$$
$$M(h)^{B_{k+1}} M(f)^{B_k^*} = M(f)^{B_{k+1}^*},$$

where
$$B_k^* = \bigcup_{j=1}^k B_j$$
.

Notice that this lemma solve the problem:

Given $f : \{0,1\}^n \to \{0,1\}^n$ a linear Boolean network and s an update schedule. Does there exist h a linear Boolean network such that $h^s = f?_{\text{roc}}$

June 24, 2025

19 / 27

Acyclic linear Boolean network

Proposition

Let $f : \{0,1\}^n \to \{0,1\}^n$ be a linear Boolean network. There exists a linear Boolean network $h : \{0,1\}^n \to \{0,1\}^n$ and an update schedule s, such that (h,s) is non-trivially dynamically equivalent to f and with only one negative arc $(u,v) \in A(h)$ if and only if the following conditions are satisfied:

- 1. $N_f^-(u) \subseteq N_f^-(v)$
- 2. $u \notin N_f^-(v) \setminus N_f^-(u)$
- 3. For every vertex $w \in N_f^-(v) \setminus N_f^-(u)$, it does not exist a path from u to w in G(f) v

Corollary

Let $f: \{0,1\}^n \to \{0,1\}^n$ be a linear Boolean network. If there exist $u, v \in V(f)$ such that $N_f^-(u) = N_f^-(v)$, then there exists a linear Boolean network h and an update schedule s such that (h,s) is non-trivially dynamically equivalent to f.

◆□> ◆□> ◆三> ◆三> ● □ ● ●

Acyclic linear Boolean network

Corollary

Let $f: \{0,1\}^n \to \{0,1\}^n$ be a linear Boolean network. If there exist $u, v \in V(f)$ such that $N_f^-(u) = N_f^-(v)$, then there exists a linear Boolean network h and an update schedule s such that (h,s) is non-trivially dynamically equivalent to f.

Corollary

Let $f : \{0,1\}^n \to \{0,1\}^n$ be a linear Boolean network. If G(f) is acyclic and for all $u \neq v \in V(f)$, $N_f^-(u) \neq N_f^-(v)$, then there exists a non-trivially pre-image (h,s) such that $h^s = f$.

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● ● ● ●

June 24, 2025

20 / 27

$$\textcircled{1} \xrightarrow{2} 2 \xrightarrow{3} 4 \textcircled{1} 2 \xrightarrow{3} 4$$

Strongly connected linear Boolean network

Proposition

Let $f: \{0,1\}^n \to \{0,1\}^n$ be a linear Boolean network. If there exist a simple cycle $C = [v_0, \ldots, v_{k-1}, v_k = v_0]$ in G(f) such that $N_f^+(C) \neq \emptyset$, then there exists a non-trivially pre-image (h, s) such that $h^s = f$.

Example of proposition where the cycle is defined by the vertices $\{1,2,3,4\}$

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● ● ● ●

Linear Boolean network

Theorem

Let $f : \{0,1\}^n \to \{0,1\}^n$ be a linear Boolean network, and let $P = \{u \in V(f) : u \text{ is not a vertex of a cycle in } G(f)\}$. There exists a solution for L-DEN problem if and only if one of the following conditions is satisfied:

▲ロ ▶ ▲ 圖 ▶ ▲ 画 ▶ ▲ 画 ■ りんの

June 24, 2025

22 / 27

- 1. There exists a simple cycle C such that $|N_f^+(C)| > 0$
- **2.** |P| > 1
- **3.** G(f) is disconnected and |P| = 1

Besides, if a solution exists, it can be found in polynomial time.

Theorem

Preimage problem with fixed update schedule can be solved in polynomial time.

Algoritmo: MaximumPreImage(f, s)

Input: A disjunctive Boolean network f and an update schedule s. **Output:** The maximum preimage h or Null if it does not exist. 1 $A^- \leftarrow \{(u, v) \in A^{\ominus}(f) : s(u) < s(v)\};$

- 2 if $A^- = \emptyset$ then return Null;
- $\mathbf{3} \ A^+ \leftarrow \{(u,v) \in A(f): s(u) \geqslant s(v)\};$
- 4 $h \leftarrow BN([n], A^- \cup A^+);$
- 5 if $h^s = f$ then return h;
- 6 else return Null;

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Algoritmo: s(h, f)

```
Input: Two disjunctive Boolean networks f, h : \{0, 1\}^n \rightarrow \{0, 1\}^n.

Output: If there exists an update schedule s such that h^s = f, it returns s.

Otherwise, returns Null.

1 s \leftarrow s_p;

2 k \leftarrow 0;

3 while h^s \neq f do

4 s' \leftarrow s-divider(f, h, s, k);

5 if s' = s then return Null;

6 k \leftarrow k + 1;

7 s \leftarrow s';

8 return s;
```

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ ● ●

Algoritmo: s-divider(f, h, s, k)

Input: Two disjunctive Boolean networks $f, h : \{0, 1\}^n \to \{0, 1\}^n$ and s is a k-valid update schedule. **Output:** s as a (k + 1)-valid update schedule. 1 $V \leftarrow \emptyset$; 2 forall $v \in [n], s(v) = k + 1$ do $B \leftarrow \{ u \in N_f^-(w) : w \in N_h^-(v) \land s(w) \le k \};$ 3 4 $F \leftarrow \{u \in N_h^-(v) : s(u) > k\};$ 5 **if** $N_{\ell}^{-}(v) = B \cup F$ then $V \leftarrow V \cup \{v\}$; 6 $s' \leftarrow s$: 7 repeat for $v \notin V \land s(v) = k + 1$ do $s'(v) \leftarrow k + 2$; 8 $V^{\ominus} \leftarrow \{v \in V : \exists (u, v) \in A^{-}(h, f), s'(u) \ge s'(v)\};$ 9 $V^{\oplus} \leftarrow \{ v \in V : \exists (v, u) \in A^+(h, f), s'(v) < s'(u) \};$ 0 1 $V^p \leftarrow \{v \in V : \exists (v, u) \in A(f), (v, u) \notin \text{potential}(f, h, s', k+1)\};$ 2 $V \leftarrow V \setminus (V^{\ominus} \cup V^{\oplus} \cup V^p):$ 3 until $(V^{\ominus} \cup V^{\oplus} \cup V^p) = \emptyset$: ◆□▶ ◆□▶ ▲□▶ ▲□▶ □ ● ● LSA June 24, 2025 25 / 27

Until now, we do not have a polynomial time solution

3

< 日 > < 同 > < 回 > < 回 > < 回 > <

- References
- Aracena, J., Goles, E., Moreira, A., & Salinas, L. (2009). On the robustness of update schedules in Boolean networks. Biosystems, 97(1), 1-8.
- Aracena, J., Cabrera-Crot, L., Richard, A., & Salinas, L. (2025). Dynamically equivalent disjunctive networks. Theoretical Computer Science, 1024, 114899.
- 3. Luis Cabrera-Crot, Study of the block-sequential operator on Boolean networks. Application to discrete network analysis. PhD. Thesis (2024)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

June 24, 2025

27 / 27

4. Benjamín Schleef. Dynamically Equivalent Linear Networks, undergraduate Thesis