Interaction graphs of Hamiltonian automata networks

Julio Aracena (DIM, CI²MA), <u>Florian Bridoux</u> (135), Adrien Richard (135), Lilian Salinas (DIICC, CI²MA)

This work has been partially funded by the HORIZON-MSCA-2022-SE-01 project 101131549 (ACANCOS)

Introduction

Automata networks

For all $q \ge 2$, $[\![q]\!] = \{0, 1, \dots, q-1\}$ is an alphabet of size q.

Definition (Automata network)

An **automata network** is a function $f : [\![q]\!]^n \to [\![q]\!]^n$ for some $q \ge 2$.

Х	f(x)	
000	000	
001	100	$f(x) = (f_1(x), f_2(x), f_3(x))$
010	001	(1) (1) (2) (2) (3) (4)
011	101	$f_1(x) = \neg x_1 \wedge x_3$
100	010	$f_2(x) = x_1$ $3 \leftarrow 2$
101	010	$f_3(x) = x_2$
110	011	Interaction graph
111	011	Local functions

Global function

Automata networks

$$f_1(x) = \neg x_1 \land x_3$$

$$f_2(x) = x_1$$

$$f_3(x) = x_2$$

Sychronous update:

$$\begin{array}{c}
t & t+1 \\
\hline
011 & f \\
\hline
 x & f(x)
\end{array}$$

Transition graph:

Hamiltonian automata networks

Definition (period)

Let $f : [\![q]\!]^n \to [\![q]\!]^n$ bijective. The **period** ρ of f is the smallest word $(f^0(0^n), f^1(0^n), \dots, f^{\ell}(0^n))$ such that $f^{\ell+1}(0^n) = 0^n$.

The period length $|\rho|=\ell+1$ of a bijective function is between 1 and q^n .

Definition (Hamiltonian automata networks)

The automata network $f : [\![q]\!]^n \to [\![q]\!]^n$ is **Hamiltonian** if $f^{q^n}(0^n) = 0^n$ and $f^{t}(0^n) \neq 0^n$ for all $0 < t < q^n$.

Equivalently:

- the transition graph of f is a single limit cycle of length q^n ;
- $\bullet |\rho| = q^n$;
- In ρ , there is exactly one time each configuration of $[\![q]\!]^n$.

Example: counter

$$f_i(x) = \begin{cases} x_i + 1 & \text{if } x_{[i+1,n]} = (q-1)^{n-i} \\ x_i & \text{otherwise.} \end{cases}$$

Remark

- The interaction digraph has about $n^2/2$ arcs.
- It has a maximum in-degree of n.

Example: de brujin sequence

Definition (de brujin sequence)

A de Bruijn sequence w of order n on a size-q alphabet is a cyclic sequence in which every possible length-n string occurs exactly once as a substring.

In other word, for all $x \in [\![q]\!]^n$, there exists $t \in [\![q^n]\!]$, such that $w_{[t,t+n \mod q^n]} = x$.

Theorem (Tatyana van Aardenne-Ehrenfest, 1951)

There exists $\frac{(q!)^{q^{n-1}}}{q^n}$ de brujin sequence of order n on a size-q alphabet.

Example: de brujin sequence

Example of brujin sequence (n = 3, q = 2):

00010111.

We can define f such that $f(w_{[t,t+n]}) = w_{[t+1,t+n+1]}$ (addition done modulo q^n).

Remark

In this example,

- The interaction digraph has 2n-1 arcs.
- It has a maximum in-degree of n.

Questions

In this presentation, we are interested in these questions:

Question

What can be said about the interaction graph of a Hamiltonian automata network?

Question

What can be said about the interaction graph of a Hamiltonian automata network with a given alphabet size?

In the 'ingeneria' thesis of Arturo Zapata, the following question was asked:

Question

In the Boolean case, is the maximum in-degree of the interaction graph of a Hamiltonian automata network always n? (when $n \ge 3$)

Basic properties

Property 1

A digraph if **coverable** if there exists a set of vertex disjoint cycles that can cover all the vertices of the graph. Equivalently, a graph is coverable if $|N_G^+(S)| \ge |S|$ for all $S \subseteq V(G)$.

Property 1:

The interaction graph of a Hamiltonian automata network are coverable.

Remark

A Hamiltonian automata network $f : [\![q]\!]^n \to [\![q]\!]^n$ is bijective.

Theorem (Maximilien Gadouleau, 2018)

If an automata network is bijective, then its interaction graph is coverable.

Property 2:

A graph G is unilaterally connected if for every vertex u and v of G, either there is a path from u to v or from v to u in G.

Property 2:

The interaction graph of a Hamiltonian automata network is unilaterally connected.

Sub network

If there are no arcs from $V(G)\setminus I$ to I in G then $f_{|I}:[\![q]\!]^{|I|}\to [\![q]\!]^{|I|}$ is the restriction of f: for all $x\in [\![q]\!]^n$, $f_I(x)=f_{|I|}(x_I)$.

Proposition

Consider a Hamiltonian $f \in F(G)$ and $I \subseteq V(G)$ such that there are no arcs from $V \setminus I$ to I in G. Then, $f|_{I}$ is Hamiltonian.

Proof:

- $f_{|I|}$ is bijective. Indeed, if $f_{|I|}$ is not bijective:
 - there exists $y \in [q]^{|I|}$ without pre-images by $f_{|I|}$.
 - Let $x \in [q]^n$ with $x_I = y$ and $x_{V(G)\setminus I} = 0^{|V(G)\setminus I|}$.
 - x has no pre-images in f.
 - So f is not bijective which is absurd.

Sub network

If there are no arcs from $V(G)\setminus I$ to I in G then $f_{|I}:[\![q]\!]^{|I|}\to [\![q]\!]^{|I|}$ is the restriction of f: for all $x\in [\![q]\!]^n$, $f_I(x)=f_{|I|}(x_I)$.

Proposition

Consider a Hamiltonian $f \in F(G)$ and $I \subseteq V(G)$ such that there are no arcs from $V \setminus I$ to I in G. Then, $f_{\mid I}$ is Hamiltonian.

Proof:

- $f_{\parallel I}$ is bijective.
- $f_{|I}$ is Hamiltonian. Indeed, if $f_{|I}$ is not Hamiltonian:
 - there exists $y \in [\![q]\!]^{|I|}$ not in the period of $f_{|I|}$.
 - Let $x \in [q]^n$ with $x_I = y$ and $x_{V(G)\setminus I} = 0^{|V(G)\setminus I|}$.
 - x is not in the period of f.
 - So f is not Hamiltonian which is absurd.

Property 2

Proof:

- $f_{|C_1 \cup C_2|}$ and $f_{|C_1 \cup C_3|}$ are Hamiltonian so their period are $q^{|C_1 \cup C_2|}$ and $q^{|C_1 \cup C_3|}$.
- So, $f_{|C_1 \cup C_2 \cup C_3}$ has period $\lim(q^{|C_1 \cup C_2|}, q^{|C_1 \cup C_3|}) < q^{|C_1 \cup C_2 \cup C_3|}$
- So, $f_{|C_1 \cup C_2 \cup C_3}$ is not Hamiltonian which is absurd.

Property 3

Definition (index of cyclicity)

The index of cyclicity c(G) of G is the gcd of all the length of its cycles.

Property 3:

Let $f \in F(G, q)$ be Hamiltonian. Let J be a component of GThen, c(G[J]) = 1 except if q = |J| = 2.

A (directed) graph is **cyclically** k-**partite** if its vertex set can be partitioned into k parts J_0, \ldots, J_{k-1} such that every arc of G goes from J_i to $J_{i+1 \mod k}$ for some $0 \le i \le k-1$.

Theorem (Brualdi et al., 1991)

If c(G) = k, then G is cyclically k-partite.

For all $1 \le i \le m$, $f_{|C_1 \cup \cdots \cup C_i|}$ is Hamiltonian. So suppose $C_m = J$.

Let $I = C_1 \cup \cdots \cup C_{m-1}$.

Let k = c(G[J]). So J is k-partite.

	1	J_0	J_1	J_2	
X	y 0	ZJ_0	ZJ_1	ZJ_2	
f(x)	y 1		$h_{J_1}^{(y^{0})}(z_{J_0})$		

- Note that $N_G^+(J_{i-1}) \subseteq J_i$ and $N_G^-(J_i) \subseteq I \cup J_i$.
- $h_{J_i}^{(y)}$ is injective.
- Therefore, $|J_0| \le |J_1| \le \cdots \le |J_{k-1}| \le |J_0|$.
- Thus, $|J_0| = |J_1| = \cdots = |J_{k-1}| = |J|/k$.
- Therefore, $h_{L}^{(y)}$ is a permutation!

$$g_i = igcap_{t=0}^{kq^{|I|}-1} h_{J_t \mod k}^{(y \pmod {q^{|I|}})}.$$
 g_i is a permutation!

 p_i : length of the smallest limit cycle of g_i .

Let $p = \text{lcm}(p_0, \dots, p_{k-1})$. We know that $f^{pkq^{|I|}}(x) = x$. Therefore,

$$q^{n} \leq pkq^{|I|}$$

$$q^{|I|+k|J_{0}|} \leq pkq^{|I|}$$

$$q^{k|J_{0}|} \leq pk$$

$$f^{kq^{|I|}}(x) = \lim_{\substack{x \\ y^0 = z_{J_0} \\ y^0 = g_0(z_{J_0})}} \frac{|J_1|}{g_1(z_{J_1})} \frac{J_2}{g_2(z_{J_2})} \cdots$$
Let $p = \text{lcm}(p_0, \dots, p_{k-1})$.

$$q^{k|J_0|} \leq pk$$

If all $p_i < q^{|J_0|}/2$,

$$q^{k|J_0|} \le k(q^{|J_0|}/2)^k$$

 $q^{k|J_0|} \le kq^{k|J_0|}/2^k$
 $1 \le k/2^k$

No solutions!

$$f^{kq^{|I|}}(x) = \lim_{\substack{x \ f^{kq^{|I|}}(x)}} \frac{\begin{vmatrix} I & J_0 & J_1 & J_2 \\ \hline y^0 & z_{J_0} & z_{J_1} & z_{J_2} \\ \hline y^0 & g_0(z_{J_0}) & g_1(z_{J_1}) & g_2(z_{J_2}) \\ \end{vmatrix}$$
Let $p = \operatorname{lcm}(p_0, \dots, p_{k-1})$.

$$q^{k|J_0|} \leq pk$$

Suppose $p_0 = q^{|J_0|}$. If $p_i = q^{|J_0|}$ then $lcm(p_0, p_i) = q^{|J_0|}$. So,

$$p \le q^{|J_0|} (q^{|J_0|}/2)^k$$

Thus.

$$q^{k|J_0|} \le kq^{k|J_0|}/2^{k-1}$$
$$1 \le k/2^{k-1}$$

Solutions: $k \in \{1, 2\}!$

$$q^{k|J_0|} \leq pk$$

Suppose
$$p_0=q^{|J_0|}$$
 and $k=2$. $p=\mathrm{lcm}(p_0,p_1)$. If $\mathrm{lcm}(p_0,p_1)\neq q^{|J_0|}$. Then $p_1\leq q^{|J_0|}/2-1$. So, $q^{2|J_0|}\leq 2q^{|J_0|}(q^{|J_0|}/2-1)$ $q^{|J_0|}\leq q^{|J_0|}-2$ $0\leq -2$

No solution!

$$q^{k|J_0|} \leq pk$$

If
$$lcm(p_0, p_1) = q^{|J_0|}$$
. Then,

$$q^{2|J_0|} \le 2q^{|J_0|}$$
 $q^{|J_0|} \le 2$

Unique solution: $|J_0| = 1$ and q = 2.

Exception: negative &

$$f \in \{0,1\}^2 \to \{0,1\}^2 \text{ with } f(x_1,x_2) = (x_2,x_1+1 \mod 2).$$

Properties

Properties

Let $f : [\![q]\!]^n \to [\![q]\!]^n$ be a Hamiltonian automata network and G be its interaction graph. Then,

- G is coverable;
- G is unilaterally connected;
- for each component C of G, c(G[C]) = 1 except if q = |C| = 2.

Conjecture

If G has the three properties, then there exist a Hamiltonian automata network $f \in F(G, q)$ for some $q \ge 2$.

Properties

Star graph S_7 :

Remark

 S_n respect all the properties. However, if $q^{(q^2)} < n$ then the interaction digraph of a Hamiltonian function $f : [\![q]\!]^n \to [\![q]\!]^n$ is not S_n .

Reminder about permutations

Reminder about permutations

- A permutation is a bijective function $p: S \to S$.
- $(a \leftrightarrow b)$ is the *transposition* defined by

$$(a \leftrightarrow b) : x \mapsto \begin{cases} b & \text{if } x = a; \\ a & \text{if } x = b; \\ x & \text{otherwise.} \end{cases}$$

- $(a \leftrightarrow a)$ is the identity function.
- For all distinct a_0, \ldots, a_{m-1} , $(a_0 \to a_1 \to \ldots a_{m-1} \to)$ is the *cyclic permutation* defined by

$$(a_0 \to a_1 \to \dots a_{m-1} \to)(x) = \begin{cases} a_{(i+1) \mod m} & \text{if } x = a_i; \\ x & \text{otherwise.} \end{cases}$$

Reminder about permutations

It is know that

$$(a_0 \rightarrow a_1 \rightarrow \dots a_{m-1} \rightarrow) = (a_0 \leftrightarrow a_{m-1}) \circ \dots \circ (a_0 \leftrightarrow a_2) \circ (a_0 \leftrightarrow a_1).$$

So any cyclic permutation on m elements can be expressed as the composition of m-1 transpositions.

- The number of transpositions is even iff m is odd!
- Any permutation can be expressed as the composition of cyclic permutations and so as the composition of transpositions.
- A permutation is even (resp. odd) if it is the composition of an even (resp. odd) number of transpositions (not counting the identity transpositions).
- It is known that a permutation cannot be even and odd at the same time.
- In fact, a permutation is even iff in its cycle decomposition, there is an even number of cyclic permutations of even size.

Odd alphabets

Odd alphabets

Theorem

The automata network $f : [\![q]\!]^n \to [\![q]\!]^n$ defined by:

$$\forall i \in [n], f_i(x) = egin{cases} x_i + 1 \mod q & ext{if } i = 1; \\ (0 \leftrightarrow x_{i-1})(x_i) & ext{otherwise}. \end{cases}$$

is Hamiltonian if q is odd.

The interaction graph G has maximum in-degree 2 for all n!

Odd alphabet

Odd alphabet

q=3		2
00	01	<u>02</u>
10/	/ 神/	
21	20	22

t	y ^t
0	0
1	1
2	2

t	x ^t	y ^t	y^{t+3}	y^{t+6}
0	0	0	1	2
1	1	0	1	2
2	2	1	0	2

Odd alphabets

$$n = 2$$

t	x ^t	y ^t	y^{t+3}	y^{t+6}
0	0	0	1	2
1	1	0	1	2
2	2	1	0	2

n	_	3
"	_	J

t	x ^t	y ^t	y^{t+9}	y^{t+18}
0	00	0	1	2
1	10	0	1	2
2	21	0	1	2
3	01	1	0	2
4	11	0	1	2
5	20	1	0	2
6	02	1	0	2
7	12	1	2	0
8	22	1	0	2

odd alphabets

$$n = 3$$
[t | x^t | y^t | y^{t+25} | y^{t+50} | y^{t+75} | y^{t+100}]

П	L	^	y	y	<i>y</i>	y	y
ĺ	0	00	0	1	2	3	4
Ì	1	10	0	1	2	3	4
ı	2	21	0	1	2	3	4
	3	31	1	0	2	3	4
ı	4	41	0	1	2	3	4
I	5	01	1	0	2	3	4
ĺ	6	11	0	1	2	3	4
ı	7	20	1	0	2	3	4
I	8	32	1	0	2	3	4
1	9	42	1	2	0	3	4
I	10	02	1	0	2	3	4
	11	12	1	2	0	3	4
l	12	22	1	0	2	3	4
	13	30	1	2	0	3	4
	14	43	1	2	0	3	4
	15	03	1	2	3	0	4
J	16	13	1	2	0	3	4
ı	17	23	1	2	3	0	4
ĺ	18	33	1	2	0	3	4
ĺ	19	40	1	2	3	0	4
Į	20	04	1	2	3	0	4
ĺ	21	14	1	2	3	4	0
l	22	24	1	2	3	0	4
ĺ	23	34	1	2	3	4	0

t	y ^t
0	0
1	1
2	2
3	3
4	4

n	=	2

t	xt	y ^t	y^{t+5}	y^{t+10}	y^{t+15}	y ^{t+20}
0	0	0	1	2	3	4
1	1	0	1	2	3	4
2	2	1	0	2	3	4
3	3	1	2	0	3	4
4	4	1	2	3	0	4

24 44

Theorem

Let $f \in F(G,q)$ be a Hamiltonian automata network with q even and $n \geq 3$. Let C_1, \ldots, C_m be the topologically ordered components of G. Then, for all $1 \leq i \leq m$, $N_G^-(C_i) = C_1 \cup \cdots \cup C_i$.

Theorem

Let $f \in F(G,q)$ be a Hamiltonian automata network with q even and $n \geq 3$. Let C_1, \ldots, C_m be the topologically ordered components of G. If $\{v\}$ is a feedback vertex set of C_i for some $1 \leq i \leq m$ then $N_G^-(v) = C_1 \cup \cdots \cup C_i$.

Lemma

- Even permutation ⇔ Even number of even cycles.
- But the sum of the cycles is qⁿ which is even.
- Therefore, there is an even number of odd cycles.
- So, even number of cycles
 ⇔ even number of even cycles
 ⇔ even permutation.

Lemma

Lemma

Lemma

Lemma

- Let $p_{(1\leftrightarrow 2)}:(x_1,x_2,x_3)\mapsto (x_2,x_1,x_3).$
- $p_{(1\leftrightarrow 2)} \circ f(x) = (f_2(x), f_1(x), f_3(x))$

- Let $p_{(1\leftrightarrow 2)}: (x_1, x_2, x_3) \mapsto (x_2, x_1, x_3)$.
- $p_{(1\leftrightarrow 2)} \circ f(x) = (f_2(x), f_1(x), f_3(x))$

• $p_{(1\leftrightarrow 2)}$ is the composition of $q^{n-2}\frac{q}{2}(q-1)$ transpositions:

$$((x_1, x_2, x_3) \leftrightarrow (x_2, x_1, x_3)).$$

• For example:

$$((0,1,0) \leftrightarrow (1,0,0)).$$

• So $p_{(1\leftrightarrow 2)}$ is even (if $n\geq 3$) and $p_{(1\leftrightarrow 2)}\circ f$ has the same parity as f.

- So, we can consider that $I = N_G^+(I)$ and $\exists j \in V(G) \setminus N_G^-(I)$.
- For all $y \in [q]^{n-|I|}$, let $h^{(y)}$ such that $f_I(x) = h^{(x_{V(G)\setminus I})}(x_I)$. $h^{(y)}$ is a permutation.
- Let $g: [q]^n \to [q]^n$ with $g_I(x) = (h^{(x_{V(G)\setminus I})})^{-1}(x_I)$ and $g_{V(G)\setminus I}(x) = \mathrm{id}$.
- Since I does not depend on v, $h^y = h^{y'}$ if y and y' only differ on j.
- Thus, g(x) makes all permutations a multiple of q times.
- So, g is an even permutation.

- So $f' = f \circ g$ as the same parity as f.
- $f'_{V(G)\setminus I} = f_{V(G)\setminus I}$ and for all $i \in I$, $f_i(x) = x_i$.

- f' is the product of the identity function $id: [\![q]\!]^{|I|} \to [\![q]\!]^{|I|}$ with $q^{|I|}$ fixed points and another permutation $f'_{V(G)\setminus I}$.
- So f' has a multiple of $g^{|I|}$ limit cycles.
- So f ' is an even permutation.

Lemma

Let $f \in F(G, q)$ be a permutation with q even and $n \geq 3$. Let $I \subseteq V(G)$. If $|I| = |N_G^+(I)|$ and $N_G^-(N_G^+(I)) \neq V(G)$. Then f has an even number of cycles.

Theorem

Let $f \in F(G,q)$ be a Hamiltonian automata network with q even and $n \geq 3$. Let C_1, \ldots, C_m be the topologically ordered components of G. Then for all $1 \leq i \leq m$, $N_G^-(C_i) = C_1 \cup \cdots \cup C_i$.

- $f_{|C_1 \cup ... C_i}$ is Hamiltonian so suppose $f = f_{|C_1 \cup ... C_i}$.
- For contradiction, suppose $N_G^-(C_i) \neq C_1 \cup \cdots \cup C_i$.
- Take $I = C_i$. Clearly, $N_G^+(C_i) = C_i$ and $N_G^-(C_i) \neq V(G)$.
- By the Lemma, f has an even number of limit cycles. This is absurd (since it is Hamiltonian, it has one limit cycle).

41/47

Lemma

Let $f \in F(G, q)$ be a permutation with q even and $n \ge 3$. Let $I \subseteq V(G)$. If $|I| = |N_G^+(I)|$ and $N_G^-(N_G^+(I)) \ne V(G)$. Then f has an even number of cycles.

Theorem

Let $f \in F(G,q)$ be a Hamiltonian automata network with q even and $n \geq 3$. Let C_1, \ldots, C_m be the topologically ordered components of G. If $\{v\}$ is a feedback vertex set of C_i for some $1 \leq i \leq m$ then $N_G^-(v) = C_1 \cup \cdots \cup C_i$.

- Suppose $f = f_{|C_1 \cup ... C_i|}$ and $N_G^-(v) \neq C_1 \cup \cdots \cup C_i$.
- $G[C_i \setminus \{v\}]$ is acyclic. Let u be the last vertex of a topological ordering of $G[C_i \setminus \{v\}]$.
- $I = \{u\}$, $N_G^+(I) = \{v\}$. By the lemma, f has an even number of limit cycles. This is absurd.

Partial results

Exemples of small degrees for even alphabets.

- We can prove that for q = 2, $n \ge 3$, the incoming degree of the interaction digraph is at least 3!
- But for q=4 we can find proper graphs with incoming degree 2! (The biggest one we found is for n=6.)
- It gives us, for q = 2, proper graphs with incoming degree 4.

Exemples of small degrees for even alphabets.

 $\forall i, f_i(x) =$

$i / \operatorname{si} x_{i-1}$	0	1	2	3
1	$(1 \leftrightarrow 2)x_1$	$(0 \leftrightarrow 1)x_1$	<i>x</i> ₁	$(0 \leftrightarrow 2)x_1$
2	$(0 \leftrightarrow 3)x_2$	$(1 \leftrightarrow 3)x_2$	$(0 \leftrightarrow 1)x_2$	$(2 \leftrightarrow 3)x_2$
3	$(1\leftrightarrow 2)x_3$	$(0 \leftrightarrow 1)x_3$	$(0 \leftrightarrow 2)x_3$	<i>x</i> ₃
4	$(1\leftrightarrow 2)x_4$	$(1\leftrightarrow 2)x_4$	$(0 \leftrightarrow 2)x_4$	$(0 \leftrightarrow 1)x_4$
5	$(2\leftrightarrow 3)x_5$	$(1\leftrightarrow 2)x_5$	$(1\leftrightarrow 3)x_5$	$(0 \leftrightarrow 3)x_5$
6	$(0 \leftrightarrow 2)x_6$	$(1\leftrightarrow 2)x_6$	$(0 \leftrightarrow 1)x_6$	$(0 \leftrightarrow 1)x_6$

 $000000 \rightarrow 030002 \rightarrow 103001 \rightarrow 010300 \rightarrow 002122 \rightarrow \dots$

Conclusion

Conclusion

In this talk, we have presented:

- Necessary conditions for the interaction graphs of Hamiltonian automata networks in general.
- More conditions when the alphabet is even.
- A construction of Hamiltonian automata network with an interaction digraph with a maximum in-degree of 2 working for all odd alphabet size.

Many questions remain open:

- Are the necessary conditions also sufficient?
- If F(G, q) admits a Hamiltonian automata networks, does F(G, q + 2) too?