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A LITTLE CONTEXT



What is a finite discrete dynamical system (FDDS) ?
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Operation : Product
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Property of product

The product of two connected FDDS A, B with cycle lengths a, b has
gcd(a, b) connected components with cycle length lcm(a, b).
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The Semiring (D, +, %)

The set D of FDDS up to isomorphism with
the alternative execution as addition and the
synchronus execution as multiplication is a
commutative semiring.



Polynomial equations over FDDS

»  Undecidable in the general case : P, (X) = P,(X)
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Polynomial equations over FDDS

»  Undecidable in the general case : P, (X) = P,(X)

* NPCingeneral for the equation P()?) = B
* |n P forthe monomial univariate equations
(A X* = B) with connected result.



OUR NEW RESULTS



1. The behavior of transient nodes



First tool : Unroll

Main idea: Transform a FDDS into a forest where each
tree is rooted in a periodic nodes and represents all
possible paths in the FDDS between a node and its root.



First tool : Unroll
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Tree product
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The Semiring (U(D), +, W)

The set U(D) of FDDS up to isomorphism
with the disjoint union as addition and the
tree product as multiplicationis a
commutative semiring.



Result over Unroll:

* U is a morphisme between D and U(D) =
U(Z?=1Aixl) = i1 U(4) UX)".



Result over Unroll:

* U is a morphisme between D and U(D) =
U(Z?=1Aixl) = Xi=1 U(4)) U(X)*.

*There exists anordersuchthatA <B © AT <
B T for allunrolltree A,B and T.
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Second tool ;: Cut

Main idea: in a forest, consider only the nodes whose
depth is less than a certain n.
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Second tool ;: Cut




Result over Cut:

* For allinteger n and FDDS 4, B we have that C,,(AB) =
Cn(A)Cn(B).
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Result over Cut:

* For allinteger n and FDDS 4, B we have that C,,(AB) =
Cn(A)Cn(B).

* There exists an integer n such that
U(ZT, 4:XT) = UB) & C, (U(ZT2, 4:X7)) = Co(U(B)).

30



Result over Cut:

* For allinteger n and FDDS 4, B we have that C,,(AB) =
Cn(A)Cn(B).

* There exists an integer n such that
U(ZT, 4:XT) = UB) & C, (U(ZT2, 4:X7)) = Co(U(B)).

* The previous orderis suchthatC,(4) < C,(B) © C,(A)C,(T) <
C,(B)C,(T) forallunrolltree A,B and T.
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Form of forests

LetP = Y, A; X' be a polynomial over U,, and X = Zé{=1 Xi
with x; < x;,4.Then, there existsi € {1, ..., m} such that:
1. The tree min(P(X)) is isomorphic to ax;*
2. min(P(X) — P(X%Z1 x;)) is isomorphic to
a,x;" 1x, forallk =2
Where a; = min(4;).
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Proof of the assertion

* Leti such that min(P(X)) € A; XL
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Proof of the assertion

* Leti such that min(P(X)) € A; XL

 Forall j, we have that min(Xj) =x,) = min(P(X)) € A;x'.
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Proof of the assertion

* Leti such that min(P(X)) € A; XL
 Forall j, we have that min(Xj) =x,) = min(P(X)) € A;x'.

* Foralla; € A;, we have that a;x;' < ajxli = min(P(X)) = a;x,".
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Proof of the assertion

Let i such that min(P(X)) € A; XL
For all j, we have that min(Xj) =x,) = min(P(X)) € A;x'.

Foralla; € A;, we have that a;x;' < ajxli = min(P(X)) = a;x,".

For all j, k, we have that:
alxli < mln(A]) xlj
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Proof of the assertion

Let i such that min(P(X)) € A; XL
For all j, we have that min(Xj) =x,) = min(P(X)) € A;x'.

Foralla; € A;, we have that a;x;' < ajxli = min(P(X)) = a;x,".

For all j, k, we have that:
alxli < mln(A]) xlj

& a;x;"! < min(4;)x 7!
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Proof of the assertion

Let i such that min(P(X)) € A; XL
For all j, we have that min(Xj) =x,) = min(P(X)) € A;x'.

Foralla; € A;, we have that a;x;' < ajxli = min(P(X)) = a;x,".

For all j, k, we have that:
a;x;t < min(4;)x,’

& a;x;"! < min(4;)x 7!

& ax 7 lx < min(Aj)xlj‘lxk.
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Proof of the assertion

Let i such that min(P(X)) € A; XL
For all j, we have that min(Xj) =x,) = min(P(X)) € A;x'.
Foralla; € 4;, we havethata;x;' < a;jx;' = min(P(X)) = a;x;,".
For all j, k, we have that:
a;x;t < min(4;)x,’
& a;x;"! < min(4;)x 7!
e a1t < min(4;) %7 .

for all j, we have that min(X/~1x; ) = min(X/~1) x; = x,/71x,,

So, min(4;) x;7 " *x;, <min(4;) yx, < ayxg, forally e X/, a€
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Consequences

For all positive integern :
1. All polynomial functions of U,, are injective (simple induction)
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Consequences

For all positive integern :
1. All polynomial functions of U,, are injective (simple induction)
2. we can solve in polynomialtime P(X) = B over U,,.
1. Taking a coefficient i,

__ i |min(B)
2. Compute x = /min(Ai),
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Consequences

For all positive integern :
1. All polynomial functions of U,, are injective (simple induction)
2. we can solve in polynomialtime P(X) = B over U,,.
1. Taking a coefficient i,

__ i |min(B)
2. Compute x = /min(Ai),

3. Addto Sol the tree min(B —P(soD))

min(4;)x!~1

until P(Sol) ¢ B,
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Consequences

For all positive integern :
1. All polynomial functions of U,, are injective (simple induction)

2. we can solve in polynomialtime P(X) = B over U,,.
1. Taking a coefficient i,

__ i |min(B)
2. Compute x = /min(Ai),

3. Addto Sol the tree min(B ~P(Sob)) until P(Sol) ¢ B,

min(4;)x!~1

4. Return P(Sol) = B.
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Consequences

1. We can solve in polynomialtime P(U(X)) = U(B) over Unroll.
2. All polynomial functions over Unroll are injective.
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2. Polynomials over FDDS and algorithms



Step one: polynomials over permutations

Let k,n, m be three positive integerwithn <kandX = X; + ... + X; be

an permutation such that length(X;) < length(X;4+1) and P(X) =
’iﬁlAiX" be a polynomial over permutation without constant term and

with at least one cancellable coefficient.

Let B be a connected component of P(X) — P(X1! X;) with minimal

cycle length and p = length(B).

Then length(X,,) = p.
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Step one: polynomials over permutations

1. length(4A") = lcm(length(A), length(A’)) for 4, A' two connected
FDDS.
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Step one: polynomials over permutations

1. length(4A") = lcm(length(A), length(A’)) for 4, A' two connected
FDDS.

2.a = lem(a,1) = lcm(a,a) < lcm(a, m) for allintegers a, m greater
than 71
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Step one: polynomials over permutations

1. length(4A") = lcm(length(A), length(A’)) for 4, A' two connected
FDDS.

2.a = lem(a,1) = lcm(a,a) < lcm(a, m) for allintegers a, m greater
than 1 = length(X,) < length(C) for all connected component C of
P(X) — P(SISAX).
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Step one: polynomials over permutations

1. length(4A") = lcm(length(A), length(A’)) for 4, A' two connected
FDDS.

2.a = lem(a,1) = lcm(a,a) < lcm(a, m) for allintegers a, m greater
than 1 = length(X,) < length(C) for all connected component C of
P(X) — P(SL X)).

3. X € X'forallintegeri greaterthan 7
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Step one: polynomials over permutations

1. length(4A") = lcm(length(A), length(A’)) for 4, A' two connected
FDDS.

2.a = lem(a,1) = lcm(a,a) < lcm(a, m) for allintegers a, m greater
than 1 = length(X,) < length(C) for all connected component C of
P(X) — P(SL X)).

3. X € X'forallintegerigreaterthan1 = X = XC; € P(X).
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Step one: polynomials over permutations

(C3+C) X+ (Cy+ CX?*=4C,+6C3+42C, +4C, +18Cy,
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Step one: polynomials over permutations

(C3+C) X+ (Co+ CX? =4(C)+ 6 C3+42C, + 4 Co + 18 Cyy
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Step one: polynomials over permutations

(C3+C) X+ (Cy+ CX?*=4C,+6C3+42C, +4C, +18Cy,

SOl —_ Cz
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Step one: polynomials over permutations

(C3+C) X+ (Cy+ CX?*=4C,+6C3+42C, +4C, +18Cy,

Z\

SOl —_ Cz

N

57



Step one: polynomials over permutations

P(X) — P(Cy) = 6(C3)+ 28 C, +3 C5 + 18 Cy,

SOl —_ Cz
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Step one: polynomials over permutations

P(X)— P(C,) =6C3+28C, +3Cs + 18 Cy,

Sol = CZ +C3
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Step one: polynomials over permutations

P(X)— P(C,) =6C3+28C, +3Cs + 18 Cy,

Z\

Sol = CZ +C3

N

P(X)— P(C, + C3) =20C, + 11 Cy,
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Step one: polynomials over permutations

P(X) — P(C; + C3) = 20Cy)+ 11 Cyy

Sol = CZ +C3
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Step one: polynomials over permutations

P(X)— P(C, + C3) =20 C, + 11 Cy,

SOl:CZ +C3 +C4
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Step one: polynomials over permutations

P(X)— P(C, + C3) =20 C, + 11 Cy,

Z\

SOl:CZ +C3 +C4

N

63



Step one: polynomials over permutations

Let P be a polynomial over permutations. If at least one non-
constant coefficient is cancellable then the polynomial is

injective and we can solve P(X) = B in polynomial time.
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Step two: root
Let a, b be two integers and A, B be two connected FDDS such that
length(A) = a and length(B) = b.
Lett, = min(U(A)) and tg = min(U(B)). We define the orders:
A <. Bifandonlyif a<bor(a=bandt, < tg)
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Step two: root

Let a, b be two integers and A, B be two connected FDDS such that
length(A) = a and length(B) = b.
Lett, = min(U(A)) and tg = min(U(B)). We define the orders:

A <. Bifandonlyif a<bor(a=bandt, < tg)

<
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Step two: root
Let a, b be two integers and A, B be two connected FDDS such that
length(A) = a and length(B) = b.
Lett, = min(U(A)) and tg = min(U(B)). We define the orders:
e« A<, Bifandonlyif a<bor(a=bandt, < tg)
A< Bifandonlyifty < tgor (ty = tgand a < b)

67



Step two: root
Let a, b be two integers and A, B be two connected FDDS such that
length(A) = a and length(B) = b.
Lett, = min(U(A)) and tg = min(U(B)). We define the orders:
e« A<, Bifandonlyif a<bor(a=bandt, < tg)
A< Bifandonlyifty < tgor (ty = tgand a < b)

=
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Step two: root

Given an FDDS X and a positive integer p, we denote by :
 X(p) the multiset of connected component of X with a cycle of lenght p.
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Step two: root

Given an FDDS X and a positive integer p, we denote by :
* X(p) the multiset of connected component of X with a cycle of lenght p.

X (4)

@
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Step two: root

Given an FDDS X and a positive integer p, we denote by :
* X(p) the multiset of connected component of X with a cycle of length p.
* X{p}the multiset of connected component of X whose cycle length is a
divisor of p.
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Step two: root

Given an FDDS X and a positive integer p, we denote by :
 X(p) the multiset of connected component of X with a cycle of length p.
* X{p}the multiset of connected component of X whose cycle length is a
divisor of p.

do®es

X{4}

) B

72



Step two: root

Let k,n, m be three positive integerwithn < kandX = X; + ... + X,
be an FDDS such that X; <, X;,1. Let B be a connected component of

min(X™ — (X751 X;)") according to <.. Letp = length(B).
Then B is a connected component of X;© ~1 X,, with X; = min(X{p})
according to <;.
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Step two: root

Idea of proof:
1. The connected component B is the productofm —1

elements of X{p} and an element of (Xm—(Z?;ll Xl-)ms)(p)
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Step two: root

Idea of proof:
1. The connected component B is the productofm —1

elements of X{p} and an element of (Xm—(Z?;ll Xl-)m)(p) =
. m
Xn € (X™=(ZE5 X)) H(@).
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Step two: root

Idea of proof:
1. The connected component B is the productofm —1

elements of X{p} and an element of (X™— (X1} Xl-)m)(p) =
— m
Xn € X™=(ZI5 X:) D ®).
2. The minimal unroll tree of B is the product of the minimal

unroll tree in X{p} raised to the power m — 1 and the minimal
unrolltree in (X — X1 X)) (p).
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Step two: root
Example: square root
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Step two: root
Example: square root
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Step two: root
Example: square root
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Step two: root
Example: square root
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Step two: root
Example: square root
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Step two: root
Example: square root
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Step two: root
Example: square root
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Step two: root
Example: square root
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Step two: root

m/s injective and we can compute it in polynomial time.
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Step three: general FDDS

Let k, n, m be three positive integerwithn < kandX = X; + ... + X;
be an FDDS such that X; <. X;,1and P = ’i’;lAiXi be a polynomial
without constant term and with at least one cancellable coefficient. Let
B be a connected component of min(P(X) — P(X"! X;)) according to
<.and p = length(B).

Then length(X,,) = p.
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Step three: general FDDS

* Since length(X,,) is the smallest cycle lengthin X — Y1 X;, we
have that length(X,,) < length(B).
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Step three: general FDDS

Since length(X,,) is the smallest cycle lengthin X — Y1 X;, we
have that length(X,,) < length(B).

length(x) = length(X,,), for all connected component x of X,,' and
forallintegeri = 1.
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Step three: general FDDS

Since length(X,,) is the smallestcycle lengthin X — Y11 X;, we
have that length(X,,) < length(B).

length(x) = length(X,,), for all connected component x of X,,' and
forallintegeri = 1.

X,' € X' forallintegeri > 1.
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Step three: general FDDS

Since length(X,,) is the smallestcycle lengthin X — Y11 X;, we
have that length(X,,) < length(B).

length(x) = length(X,,), for all connected component x of X,,' and
forallintegeri = 1.

X,' € X' forallintegeri > 1.

Since P contains a cancellable coefficient, there exists a connected
coefficient B'in P(X) — P(X™ ' X;) such that length(B’) =
length(X,,)
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Step three: general FDDS

Since length(X,,) is the smallest cycle lengthin X — Y11 X;, we
have that length(X,,) < length(B).

length(x) = length(X,,), for all connected component x of X,,' and
forallintegeri = 1.

X,' € X' forallintegeri > 1.

Since P contains a cancellable coefficient, there exists a connected
coefficient B'in P(X) — P(X™ ' X;) such that length(B’) =
length(X,,) = length(X,,) = length(B).

94



1.

Step three: general FDDS

If P = ’i’;lAiXi is a polynomial without constant terms and
contains a cancellable coefficient, then P is injective (simple
induction).

95



Step three: general FDDS

. IfP = ’i’;lAiXi is a polynomial without constant terms and
contains a cancellable coefficient, then P is injective (simple

induction).
. We can solve in polynomial time the equation P(X) = B, by :
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Step three: general FDDS

. IfP = ’i’;lAiXi is a polynomial without constant terms and
contains a cancellable coefficient, then P is injective (simple

induction).
We can solve in polynomial time the equation P(X) = B, by :

1. Letp be the length of a connected component of min(B —
P(Sol)) accordingto <,
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Step three: general FDDS

. IfP = ’i’;lAiXi is a polynomial without constant terms and
contains a cancellable coefficient, then P is injective (simple
induction).

. We can solve in polynomial time the equation P(X) = B, by :
1. Letp be the length of a connected component of min(B —

P(Sol)) accordingto <,
2. Solve the equation C,, (U(P(X) — P(Sol))) = C,(U(B)),
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Step three: general FDDS

. IfP = ’i’;lAiXi is a polynomial without constant terms and
contains a cancellable coefficient, then P is injective (simple

induction).
. We can solve in polynomial time the equation P(X) = B, by :

1. Letp be the length of a connected component of min(B —
P(Sol)) accordingto <,

2. Solve the equation C,, (U(P(X) — P(Sol))) = Cn(U(B)),

3. Rollthe minimum tree of this solution with period p,
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Step three: general FDDS

. IfP = ’i’;lAiXi is a polynomial without constant terms and
contains a cancellable coefficient, then P is injective (simple
induction).

. We can solve in polynomial time the equation P(X) = B, by :
1. Letp be the length of a connected component of min(B —

P(Sol)) accordingto <,
2. Solve the equation C,, (U(P(X) — P(Sol))) = Cn(U(B)),
Roll the minimum tree of this solution with period p,
4. Add the resulting componentto Sol,

@
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1.

Step three: general FDDS

If P = ’i’;lAiXi is a polynomial without constant terms and
contains a cancellable coefficient, then P is injective (simple

induction).
We can solve in polynomial time the equation P(X) = B, by :

1. Letp be the length of a connected component of min(B —
P(Sol)) accordingto <,

Solve the equation C,, (U(P(X) — P(Sol))) = Cn(U(B)),
Roll the minimum tree of this solution with period p,

Add the resulting component to Sol,
Repeat until P(Sol) & B,

gL Dd
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1.

Step three: general FDDS

If P = ’i’;lAiXi is a polynomial without constant terms and
contains a cancellable coefficient, then P is injective (simple
induction).

We can solve in polynomial time the equation P(X) = B, by :
1. Letp be the length of a connected component of min(B —

P(Sol)) accordingto <,

Solve the equation C,, (U(P(X) — P(Sol))) = Cn(U(B)),
Roll the minimum tree of this solution with period p,

Add the resulting component to Sol,

Repeat until P(Sol) & B,
Return P(S()l) = B. 102
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Thanks for your attention
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