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A LITTLE CONTEXT
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Operation : Sum
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Operation : Product
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Operation : Product
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Property of product

The product of two connected FDDS with cycle lengths has 
connected components with cycle length .
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The Semiring (D, +, ×) 

The set D of FDDS up to isomorphism with
the alternative execution as addition and the 
synchronus execution as multiplication is a 
commutative semiring.
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Polynomial equations over FDDS

• Undecidable in the general case : 
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Polynomial equations over FDDS

• Undecidable in the general case : 
• in general for the equation
• In P for the monomial univariate equations

( ) with connected result.
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OUR NEW RESULTS
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1. The behavior of transient nodes

18



First tool : Unroll

Main idea : Transform a FDDS into a forest where each
tree is rooted in a periodic nodes and represents all 
possible paths in the FDDS between a node and its root.



First tool : Unroll

a

b c

d

a
0

b
1

c
1

d
2

e
1

a
2

b
3

c
3

a
3

…

e

e
0

a
1

b
2

c
2

d
3

e
2

…

20



Tree product
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The Semiring (U(D), +, ) 

The set U(D) of FDDS up to isomorphism
with the disjoint union as addition and the 
tree product as multiplication is a 
commutative semiring.
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Result over Unroll:

• D and U(D) 
.
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Result over Unroll:

• D and U(D) 
.

• There exists an order such that
for all unroll tree and .
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Second tool : Cut

Main idea : in a forest, consider only the nodes whose
depth is less than a certain n. 
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Second tool : Cut
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Result over Cut:

• For all integer and FDDS we have that
.
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Form of forests

Let be a polynomial over and 
with . Then, there exists such that :

1. The tree is isomorphic to 
2. is isomorphic to 

for all 
Where .

32



Proof of the assertion
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Consequences

For all positive integer :
1. All polynomial functions of are injective (simple induction)
2. we can solve in polynomial time over .

1. Taking a coefficient ,

2. Compute = 
೔

೔
,

3. Add to the tree
೔

೔షభ until ,

4. Return .
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Consequences

1. We can solve in polynomial time over Unroll.
2. All polynomial functions over Unroll are injective.
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2. Polynomials over FDDS and algorithms
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Step one: polynomials over permutations

48

Let be three positive integer with and be
an permutation such that and 

be a polynomial over permutation without constant term and 
with at least one cancellable coefficient. 
Let be a connected component of with minimal 
cycle length and  . 
Then .
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Step one: polynomials over permutations
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Step one: polynomials over permutations

Let be a polynomial over permutations. If at least one non-
constant coefficient is cancellable then the polynomial is
injective and we can solve in polynomial time.
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Step two: root
Let be two integers and be two connected FDDS such that

and . 
Let and . We define the orders: 

•
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Step two: root

Given an FDDS and a positive integer , we denote by :
• the multiset of connected component of with a cycle of lenght .
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Step two: root

Let be three positive integer with and 
be an FDDS such that . Let be a connected component of   

according to . Let . 
Then is a connected component of with
according to .
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Step two: root

Idea of proof :
1. The connected component is the product of 

elements  of and an element of 
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Step two: root

Idea of proof :
1. The connected component is the product of 

elements  of and an element of 
.

2. The minimal unroll tree of is the product of the minimal 
unroll tree in raised to the power and the minimal 
unroll tree in .
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Step two: root 
Example: square root
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Step two: root

೘ is injective and we can compute it in polynomial time.
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Step three: general FDDS

Let be three positive integer with and 
be an FDDS such that and be a polynomial 
without constant term and with at least one cancellable coefficient. Let 

be a connected component of according to 
and  . 

Then .
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Step three: general FDDS

• Since is the smallest cycle length in , we
have that .
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Step three: general FDDS

1. If is a polynomial without constant terms and
contains a cancellable coefficient, then is injective (simple 
induction). 

2. We can solve in polynomial time the equation , by :
1. Let be the length of a connected component of 

according to .
2. Solve the equation . 
3. Roll the minimum tree of this solution with period .
4. Add the resulting component to . 
5. Repeat until .
6. Return . 95
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Thanks for your attention
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