Finite Dynamical Systems and Divisor of Sum of Cycles

Phan Thi Ha Duong

Institute of Mathematics, Vietnam Academy of Science and Technology

November 2024 - Sophia Antipolis

Deterministic Finite Dynamical Systems

Definition:

- A deterministic, finite, discrete-time dynamical system is a function mapping a finite set of states to itself.
- Represented as a *functional digraph* (up to an isomorphism): a finite directed graph where each vertex has a unique out-neighbor.

Some references:

- Alberto Dennunzio, Valentina Dorigatti, Enrico Formenti, Luca Manzoni, and Antonio E Porreca
- François Doré, Kévin Perrot, Antonio E. Porreca, Sara Riva and Marius Rolland
- Émile Naquin, Maximilien Gadouleau
- Florian Bridoux, Christophe Crespelle, Thi Ha Duong Phan, and Adrien Richard

Algebraic Operations on Functional Digraphs

Digraph A: vertex set V(A), edge set E(A). Addition (A + B):

Disjoint union of functional digraphs A and B.

Multiplication (AB):

- Direct product of A and B.
- ▶ Vertex set V(AB) is the Cartesian product $V(A) \times V(B)$.
- Edge from $(x, y) \rightarrow (x', y')$, if : $x \rightarrow x'$ in A and $y \rightarrow y'$ in B.

Semiring Structure:

The set of functional digraphs with these operations forms a semiring.

Division Problem in Functional Digraphs

Multiplicative Structure

Division Problem:

Given functional digraphs A and B, does A divide B?

• Exists a solution X to AX = B?

Complexity:

- Problem is in NP.
- General case remains open.
- Better upper bounds under certain conditions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Structure of Functional digraph

Definition: A functional digraph A has every vertex with exactly one outgoing edge.

Components:

Cyclic Part: Collection of disjoint cycles.

Transient Part:

- Remaining structure after removing cycles.
- Disjoint union of out-trees.

We focus on the case: each graph be a collection of disjoint cycles - called Sum of cycles

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Divisors of Graphs as Sum of Cycles

Objective:

Investigate divisors of graphs that can be represented as a sum of cycles.

Focus Areas:

- Cycle Lengths as Powers of a Prime:
 - Initial focus on cycles where lengths are powers of the same prime number.

Generalization Using Recurrence:

- Employ a recurrence method.
- Based on the number of distinct prime factors in cycles.

Sum of Cycles with One Prime Number

Ring of Polynomials on One Prime Number

Let X and Y be two sums of cycles. We define two operators, called addition and product, as follows: For sums of cycles:

$$X = x_1 C_1 + x_2 C_2 + \dots + x_m C_m,$$

 $Y = y_1 C_1 + y_2 C_2 + \dots + y_k C_k,$

Addition: The sum Z = X + Y is defined by

$$Z=\sum_{i=1}^m z_i C_i$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where $z_i = x_i + y_i$.

Multiplication of Cycles

Multiplication: The product $Z = X \cdot Y$ is defined by

$$Z = \sum_{0 \le i \le m, 0 \le j \le k} x_i y_j C_i C_j,$$

where

$$C_i C_j = \gcd(i,j) C_{\operatorname{lcm}(i,j)}.$$

We denote by n(X) the size of X, that means

$$n(X) = x_1 + 2x_2 + \cdots + mx_m.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let X be a sum of cycles where the lengths are powers of the same prime. We write X as:

$$X = x_1 C_1 + x_p C_p + x_{p^2} C_{p^2} + \dots + x_{p^m} C_{p^m}.$$

The set $\mathbb{N}[p]$, with the operations of addition and multiplication, forms a semiring over \mathbb{N} .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Extension: the set $\mathbb{Q}[p]$, with the operations of addition and multiplication, forms a ring over \mathbb{Q} .

Algorithm to Check Divisors

Introduction to Divisors of Cycles

Let B be a sum of cycles, each of length being a power of the same prime p:

$$B = b_1 C_1 + b_{p^{\alpha_1}} C_{p^{\alpha_1}} + b_{p^{\alpha_2}} C_{p^{\alpha_2}} + \ldots + b_{p^{\alpha_k}} C_{p^{\alpha_k}}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conditions:

▶
$$0 = \alpha_0 < \alpha_1 < \alpha_2 < ... < \alpha_k$$

▶ $b_{p^{\alpha_i}} > 0$ for $i = 1, 2, ..., k$
▶ $b_1 \ge 0$

Key Question: What form must a divisor A of B take?

Form of Divisors

Lemma on Forms of A and X

▶ If $B = A \cdot X$, then:

$$A = A_* + \sum_{i=1}^k a_{p^{\alpha_i}} C_{p^{\alpha_i}}, \quad X = X_* + \sum_{i=1}^k x_{p^{\alpha_i}} C_{p^{\alpha_i}}$$

Where:

$$\mathcal{A}_{*} = \sum_{j=0}^{lpha_{1}-1} \mathsf{a}_{p^{j}} C_{p^{j}}, \quad X_{*} = \sum_{j=0}^{lpha_{1}-1} x_{p^{j}} C_{p^{j}}$$

• a_{p^j}, x_{p^j} are non-negative integers. **Two Cases**:

• If $b_1 \neq 0$:

$$A_* = a_1 C_1, \quad X_* = x_1 C_1 \text{ with } x_1 = \frac{b_1}{a_1}$$

If b₁ = 0:

$$A_* = 0$$
 or $X_* = 0$

Note: X is called a quotient of $\frac{B}{A}$, different quotients X may exist.

Lemma: Form of A and X

For all $1 \leq l \leq k$:

$$(a_* + \sum_{i=1}^k a_{p^{\alpha_i}} C_{p^{\alpha_i}})(x_* + \sum_{i=1}^l x_{p^{\alpha_i}} C_{p^{\alpha_i}}) = b_1 + \sum_{i=1}^l b_{p^{\alpha_i}} C_{p^{\alpha_i}}.$$

Special Case: If $b_1 \neq 0$, then $a_* = a_1$ and $x_* = x_1$.

Computing $x_{p^{\alpha_i}}$

In all cases:

. . .

$$\begin{aligned} a_* x_* &= b_1 \\ x_{p^{\alpha_1}} &= \frac{1}{p^{\alpha_1}} \left(\frac{b_1 + p^{\alpha_1} b_{p^{\alpha_1}}}{a_* + p^{\alpha_1} a_{p^{\alpha_1}}} - x_* \right) \\ x_{p^{\alpha_2}} &= \frac{1}{p^{\alpha_2}} \left(\frac{b_1 + \sum_{i=1}^2 p^{\alpha_i} b_{p^{\alpha_i}}}{a_* + \sum_{i=1}^2 p^{\alpha_i} a_{p^{\alpha_i}}} - \frac{b_1 + p^{\alpha_1} b_{p^{\alpha_1}}}{a_* + p^{\alpha_1} a_{p^{\alpha_1}}} \right) \end{aligned}$$

$$x_{p^{\alpha_k}} = \frac{1}{p^{\alpha_k}} \left(\frac{b_1 + \sum_{i=1}^k p^{\alpha_i} b_{p^{\alpha_i}}}{a_* + \sum_{i=1}^k p^{\alpha_i} a_{p^{\alpha_i}}} - \frac{b_1 + \sum_{i=1}^{k-1} p^{\alpha_i} b_{p^{\alpha_i}}}{a_* + \sum_{i=1}^{k-1} p^{\alpha_i} a_{p^{\alpha_i}}} \right).$$

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

Uniqueness and Non-negativity of $x_{p^{\alpha_i}}$ (for i = 2, ..., k)

•
$$x_{p^{\alpha_i}} = \frac{Q_i - Q_{i-1}}{p^{\alpha_i}}$$

uniquely determined and non-negative iff: condition (*):

$$Q_{i-1} = \frac{b_1 + p^{\alpha_1} b_{p^{\alpha_1}} + \ldots + p^{\alpha_{i-1}} b_{p^{\alpha_{i-1}}}}{a_* + p^{\alpha_1} a_{p^{\alpha_1}} + \ldots + p^{\alpha_{i-1}} a_{p^{\alpha_{i-1}}}} \equiv \frac{n(B)}{n(A)} \mod p^{\alpha_i}$$
$$Q_i \ge Q_{i-1}$$

• Q_1, Q_2, \ldots, Q_k satisfying (*): suitable sequence.

Other Variables:

- ▶ Variables x_j with $j \le p^{\alpha_1}$ depend on $a_*, a_{p^{\alpha_1}}, b_1, b_{p^{\alpha_1}}$.
- There may be no solution, one solution, or multiple solutions for these variables.

Number of solutions

Solve the First Equation

- If $a_* \neq 0$, then the solution is unique.
- If a_{*} = 0, then all x_{p^{α_i} for i ≥ 2 are already determined. For the first variables, solve the equation:</sub>}

$$x_1 + px_p + p^2 x_{p^2} + \ldots + p^{\alpha_1 - 1} x_{p^{\alpha_1 - 1}} + x_{p^{\alpha_1}} p^{\alpha_1} = \frac{b_{p^{\alpha_1}}}{a_{p^{\alpha_1}}}.$$

• There are $s\left(\frac{b_p\alpha_1}{a_p\alpha_1}, p, \alpha_1\right)$ solutions, where s(n, p, k) is the number of solutions of the equation:

$$x_1 + px_p + p^2 x_{p^2} + \ldots + p^{k-1} x_{p^{k-1}} + x_{p^k} p^k = n.$$

▲□▶▲□▶▲□▶▲□▶ = のへの

Theorem: Algorithm for Divisibility in Case of single prime

Theorem

Let $B = b_1 C_1 + b_{p^{\alpha_1}} C_{p^{\alpha_1}} + b_{p^{\alpha_2}} C_{p^{\alpha_2}} + \ldots + b_{p^{\alpha_k}} C_{p^{\alpha_k}}$. Let A be a sum of cycles. There exists an algorithm with a time complexity of $O(k^2 + \alpha_1)$ to determine if A divides B. This algorithm also describes all quotients $X = \frac{B}{A}$.

A D N A 目 N A E N A E N A B N A C N

Example 1: Finding Solutions for XEquation: AX = B

$$A = 2C_3 + C_9, \quad B = 80C_3 + 40C_9$$

Solution:

By Lemma 3, X is of the form:

$$X = x_1 C_1 + x_3 C_3 + x_9 C_9$$

System of equations:

$$x_1 + 3x_3 = \frac{80}{2} = 40,$$

$$x_9 = \frac{1}{9} \left(\frac{3 \times 80 + 9 \times 40}{3 \times 2 + 9} - \frac{800}{2} \right) = 0$$

There are 14 solutions with x₃ ranging from 0 to 13, satisfying:

$$x_1 + 3x_3 = 40$$

 $\blacktriangleright X = x_1C_1 + x_3C_3$

Example 2: Finding Solutions for Y

Equation: AY = B

 $A = 32 + 8C_3 + 4C_9, \quad B = 576 + 704C_3 + 192C_9$

Solution:

▶ By Lemma 3, Y is of the form:

$$Y = y_1 C_1 + y_3 C_3 + y_9 C_9$$

System of equations:

$$y_1 = \frac{576}{32} = 18,$$

$$y_1 + 3y_3 = \frac{576 + 3 \times 704}{32 + 8 \times 3} = 48,$$

$$y_9 = \frac{1}{9} \left(\frac{576 + 3 \times 704 + 9 \times 192}{32 + 8 \times 3 + 4 \times 9} - 48 \right) = 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

General Sum of Cycles

Theorem

Let B be a general sum of cycles. Let A be a sum of cycles. There exists an algorithm to determine whether A is a divisor of B. In the affirmative case, the algorithm also describes all divisors X such that $A \cdot X = B$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Semiring of Multi Variables

Definition: Let $p_1, p_2, ..., p_k$ be k distinct prime numbers. Define $\mathbb{N}[p_1, p_2, ..., p_k]$ (or $\mathbb{Q}[p_1, p_2, ..., p_k]$) as the set of sums of cycles X of the form:

$$X = \sum_{0 \le i_1, i_2, \dots, i_k} x_{i_1, i_2, \dots, i_k} C_{p_1^{i_1}} C_{p_2^{i_2}} \dots C_{p_k^{i_k}}$$

where $x_{i_1,i_2,...,i_k}$ are coefficients in \mathbb{N} (or \mathbb{Q}).

Operators: Addition and Multiplication are well-defined over these sets.

Extension: The semiring $\mathbb{N}[p_1, p_2, \dots, p_k, p_{k+1}]$ can be viewed as:

 $\mathbb{N}[p_1, p_2, \ldots, p_k][p_{k+1}]$

Algorithm for *m* Primes

- 1. Determine the semiring of polynomials:
 - Let p_1, \ldots, p_m be the primes in the cycle lengths of *B*.
 - Write B and A in $\mathbb{N}[p_1, p_2, \dots, p_m]$.
 - If m = 0 or m = 1, apply the algorithm for the single case.
 - Otherwise, continue to Step 2.
- 2. If $m \ge 2$ and the algorithm for m-1 primes has been solved:
 - Let k = m 1, express B and A in $\mathbb{N}[p_1, p_2, \dots, p_k][p]$, where $p = p_m$.
 - Find X such that $B = A \times X$:

$$B = b_0 C_1 + \sum_i b_{p^{\alpha_i}} C_{p^{\alpha_i}}$$

$$A = A_* + \sum_i a_{p^{\alpha_i}} C_{p^{\alpha_i}}, \quad X = X_* + \sum_i x_{p^{\alpha_i}} C_{p^{\alpha_i}}$$

with $b_i, a_i, x_i \in \mathbb{N}[p_1, p_2, \ldots, p_k]$.

Find the Suitable Sequence Q_i

Challenge: The Q_i may not be unique.

• Compute the quotient $Q_k = \frac{n(B)}{n(A)}$ in $\mathbb{N}[p_1, p_2, \dots, p_k]$, using Algorithm for k primes.

$$Q_k = \frac{n(B)}{n(A)} = \frac{b_1 + p^{\alpha_1}b_{\alpha_1} + \dots + p^{\alpha_k}b_{\alpha_k}}{a_* + p^{\alpha_1}a_{\alpha_1} + \dots + p^{\alpha_k}a_{\alpha_k}}$$

• Let S_k be the set of all possible quotients Q_k .

For each i = k - 1, k - 2, ..., 2, 1, find all suitable elements:

$$Q_{i} = \frac{b_{1} + p^{\alpha_{1}}b_{p^{\alpha_{1}}} + \dots + p^{\alpha_{i}}b_{p^{\alpha_{i}}}}{a_{*} + p^{\alpha_{1}}a_{p^{\alpha_{1}}} + \dots + p^{\alpha_{i}}a_{p^{\alpha_{i}}}}$$

- Check the suitable conditions:
 - ▶ If there exists Q_k in S_k such that $Q_i \equiv Q_k \mod p^{\alpha_{i+1}}$, and

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▶ If there exists Q_{i+1} marked by Q_k such that $Q_i \leq Q_{i+1}$.

Find the Suitable Sequence (continued)

- 1. Check the suitable conditions:
 - ▶ If there exists Q_k in S_k such that $Q_i \equiv Q_k \mod p^{\alpha_{i+1}}$, and
 - ▶ If there exists Q_{i+1} marked by Q_k such that $Q_i \leq Q_{i+1}$.
- 2. If Q_i satisfies these two conditions, then mark Q_i by Q_k .
- 3. Add Q_i to S_i .
- 4. Delete all elements in S_k that are not used to make any Q_i in this step.

From suitable sequences to solutions.

- ► After Step 2.2, we obtain S₁, containing all Q₁ which have a suitable list (Q₁, Q₂, Q₃,..., Q_{k-1}, Q_k).
- ► For each suitable list (Q₁, Q₂, Q₃,..., Q_{k-1}, Q_k), we have a solution:

$$\forall i \in \{1, 2, \ldots, k\}, \quad x_{p^{\alpha_i}} = \frac{Q_i - Q_{i-1}}{p^{\alpha_i}},$$

(日)((1))

which are in $\mathbb{N}[p_1, p_2, \ldots, p_k]$.

Example: Find X such that $A \cdot X = B$

Given:

$$B = 72C_8 + 80C_{12} + 48C_{24} + 40C_{36} + 4C_{72},$$

$$A = 4C_8 + 2C_{12} + C_{36}.$$

Consider p = 3, q = 2, and $B \in \mathbb{N}[3][2]$. Express *B* and *A* as:

$$B = (80C_3 + 40C_9)C_{2^2} + (72 + 48C_3 + 4C_9)C_{2^3},$$

$$A = (2C_3 + C_9)C_{2^2} + 4C_{2^3}.$$

Form of X:

$$X = y_1 C_1 + y_2 C_2 + y_4 C_{2^2} + y_8 C_{2^3},$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where $y_1, y_2, y_4, y_8 \in \mathbb{N}[3]$.

Example (continued): Using the Algorithm

Using the algorithm:

$$y_1 + 2y_2 + 4y_4 = \frac{80C_3 + 40C_9}{2C_3 + C_9},$$
$$y_8 = \frac{1}{8} \left(\frac{576 + 704C_3 + 192C_9}{32 + 8C_3 + 4C_9} - \frac{80C_3 + 40C_9}{2C_3 + C_9} \right).$$

First compute:

$$\frac{576 + 704C_3 + 192C_9}{32 + 8C_3 + 4C_9} = 18C_1 + 10C_3.$$

Then:

$$y_1 + 2y_2 + 4y_4 = \frac{80C_3 + 40C_9}{2C_3 + C_9} = r_1C_1 + r_3C_3,$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

with $r_1 + 3r_3 = 40$.

Example (continued): Solutions

Compute *y*₈:

$$y_8 = \frac{1}{8}(18C_1 + 10C_3 - (r_1 + r_3C_3)) = \frac{18 - r_1}{8} + \frac{10 - r_3}{8}C_3,$$

where $r_1 + 3r_3 = 40$. Since y_8 must have non-negative integer coefficients:

$$r_3 = 10, \quad r_1 = 10, \quad y_8 = 1.$$

Number of solutions:

 $y_1+2y_2+4y_4 = 10C_1+10C_3$, $f(10,2,2) = 12 \Rightarrow 144$ solutions.

Example solutions:

•
$$y_4 = C_1 + C_3, y_2 = C_1, y_1 = 4C_1 + 6C_3$$

• $y_4 = 2C_1 + C_3, y_2 = 2C_3, y_1 = 2C_1 + 2C_3$
• $y_4 = 2C_1, y_2 = 5C_3, y_1 = 2C_1$

Complexity of Algorithms. Algorithm for Single Prime

Step 1: Takes *O*(1) time.

Step 2: For each i, it takes O(k) time.

Step 3: To describe all solutions, it takes O(1) time.

Total Complexity: $O(k^2)$ time for a single prime.

Number of Solutions: $s\left(\frac{b_{\rho}\alpha_1}{a_{\rho}\alpha_1}, p, \alpha_1\right)$, where s(n, p, k): number of solutions of:

$$x_1 + px_p + p^2 x_{p^2} + \ldots + p^{k-1} x_{p^{k-1}} + x_{p^k} p^k = n.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Time to list Solutions: $k \cdot s(n, p, k)$ time.

Current and Future Tasks:

- Analyze algorithm complexity for the general case.
- Calculate the number of solutions.
- Find divisors of a given sum of cycles.
- Determine when X is a prime.
- Determine when *X* is irreducible.

Upper Bound for s(n, p, k)

A well-studied function initiated by Mahler.

Focus on finding the upper bound.

Thank you for your attention!

Theorem 1: There exists an algorithm with a time complexity of $O(k^2 + \alpha_1)$ to determine if *A* divides *B*, and to describe all quotients $X = \frac{B}{A}$. **Algorithm Steps:**

- Step 1: Handle the first condition
- ▶ Step 2: Compute all x_{p^i} for $i \ge 1$
- Step 3: Solve the equation

Algorithm Complexity

Step 1: O(1) time. **Step 2**: For each *i*, takes O(k) time. **Step 3**: Describing all solutions takes O(1) time. There are $s\left(\frac{b_{p}\alpha_{1}}{a_{p}\alpha_{1}}, p, \alpha_{1}\right)$ solutions. Listing all solutions takes $k \cdot s(n, p, k)$ time.

Lemma: Form of A and X

Lemma If $B = A \cdot X$, then:

$$\begin{array}{ll} A_{*}X_{*} & = b_{1}C_{1} \\ (a_{*} + a_{p^{\alpha_{1}}}C_{p^{\alpha_{1}}})(x_{*} + x_{p^{\alpha_{1}}}C_{p^{\alpha_{1}}}) & = b_{1} + b_{p^{\alpha_{1}}}C_{p^{\alpha}} \\ (a_{*} + a_{p^{\alpha_{1}}}C_{p^{\alpha_{1}}} + a_{p^{\alpha_{2}}}C_{p^{\alpha_{2}}})(x_{*} + x_{p^{\alpha_{1}}}C_{p^{\alpha_{1}}} + x_{p^{\alpha_{2}}}C_{p^{\alpha_{2}}}) & = b_{1} + b_{p^{\alpha_{1}}}C_{p^{\alpha}} \\ \cdots \end{array}$$

Lemma: Computing X

If $B = A \cdot X$ then

$$\begin{array}{ll} A_{*}X_{*} & =b_{1}C_{1} \\ (a_{*}+a_{p^{\alpha_{1}}}C_{p^{\alpha_{1}}})(x_{*}+x_{p^{\alpha_{1}}}C_{p^{\alpha_{1}}}) & =b_{1}+b_{p^{\alpha_{1}}}C_{p^{\alpha_{1}}} \\ (a_{*}+a_{p^{\alpha_{1}}}C_{p^{\alpha_{1}}}+a_{p^{\alpha_{2}}}C_{p^{\alpha_{2}}})(x_{*}+x_{p^{\alpha_{1}}}C_{p^{\alpha_{1}}}+x_{p^{\alpha_{2}}}C_{p^{\alpha_{2}}}) & =b_{1}+b_{p^{\alpha_{1}}}C_{p^{\alpha_{1}}}+b_{p^{\alpha_{1}}} \\ \cdots \\ (a_{*}+a_{p^{\alpha_{1}}}C_{p^{\alpha_{1}}}+\dots+a_{p^{\alpha_{k}}}C_{p^{\alpha_{k}}})(x_{*}+x_{p^{\alpha_{1}}}C_{p^{\alpha_{1}}}+\dots+x_{p^{\alpha_{k}}}C_{p^{\alpha_{k}}}) & =b_{1}+b_{p^{\alpha_{1}}}C_{p^{\alpha_{1}}}+\dots \\ \end{array}$$

If $b_1 \neq 0$, then it follows that $a_* = a_1$ and $x_* = x_1$. In all cases:

$$\begin{aligned} a_* x_* &= b_1 \\ (a_* + p^{\alpha_1} a_{p^{\alpha_1}})(x_* + p^{\alpha_1} x_{p^{\alpha_1}}) &= b_1 + p^{\alpha_1} b_{p^{\alpha_1}} \\ (a_* + p^{\alpha_1} a_{p^{\alpha_1}} + p^{\alpha_2} a_{p^{\alpha_2}})(x_* + p^{\alpha_1} x_{p^{\alpha_1}} + p^{\alpha_2} x_{p^{\alpha_2}}) &= b_1 + p^{\alpha_1} b_{p^{\alpha_1}} + p^{\alpha_2} b_{p^{\alpha_2}} \\ \cdots \\ (a_* + p^{\alpha_1} a_{p^{\alpha_1}} + \dots + p^{\alpha_k} a_{p^{\alpha_k}})(x_* + p^{\alpha_1} x_{p^{\alpha_1}} + \dots + p^{\alpha_k} x_{p^{\alpha_k}}) &= b_1 + p^{\alpha_1} b_{p^{\alpha_1}} + \dots + p^{\alpha_k} b_{p^{\alpha_k}} \end{aligned}$$

Computing X

Or equivalently,

$$a_{*}x_{*} = b_{1}$$

$$x_{p^{\alpha_{1}}} = \frac{1}{p^{\alpha_{1}}} \left(\frac{b_{1} + p^{\alpha_{1}}b_{p^{\alpha_{1}}}}{a_{*} + p^{\alpha_{1}}a_{p^{\alpha_{1}}}} - x_{*} \right)$$

$$x_{p^{\alpha_{2}}} = \frac{1}{p^{\alpha_{2}}} \left(\frac{b_{1} + p^{\alpha_{1}}b_{p^{\alpha_{1}}} + p^{\alpha_{2}}b_{p^{\alpha_{2}}}}{a_{*} + p^{\alpha_{1}}a_{p^{\alpha_{1}}} + p^{\alpha_{2}}a_{p^{\alpha_{2}}}} - \frac{b_{1} + p^{\alpha_{1}}b_{p^{\alpha_{1}}}}{a_{*} + p^{\alpha_{1}}a_{p^{\alpha_{1}}}} \right)$$
...

$$x_{p^{\alpha_{i}}} = \frac{1}{p^{\alpha_{i}}} \left(\frac{b_{1} + p^{\alpha_{1}}b_{p^{\alpha_{1}}} + \ldots + p^{\alpha_{i}}b_{p^{\alpha_{i}}}}{a_{*} + p^{\alpha_{1}}a_{p^{\alpha_{1}}} + \ldots + p^{\alpha_{i}}a_{p^{\alpha_{i}}}} - \frac{b_{1} + p^{\alpha_{1}}b_{p^{\alpha_{1}}} + \ldots + p^{\alpha_{i-1}}b_{p^{\alpha_{i-1}}}}{a_{*} + p^{\alpha_{1}}a_{p^{\alpha_{1}}} + \ldots + p^{\alpha_{i-1}}a_{p^{\alpha_{i-1}}}} \right)$$

$$x_{p^{\alpha_{k}}} = \frac{1}{p^{\alpha_{k}}} \left(\frac{b_{1} + p^{\alpha_{1}}b_{p^{\alpha_{1}}} + \ldots + p^{\alpha_{k}}b_{p^{\alpha_{k}}}}{a_{*} + p^{\alpha_{1}}a_{p^{\alpha_{1}}} + \ldots + p^{\alpha_{k}}a_{p^{\alpha_{k}}}} - \frac{b_{1} + p^{\alpha_{1}}b_{p^{\alpha_{1}}} + \ldots + p^{\alpha_{k-1}}b_{p^{\alpha_{k-1}}}}{a_{*} + p^{\alpha_{1}}a_{p^{\alpha_{1}}} + \ldots + p^{\alpha_{k-1}}a_{p^{\alpha_{k-1}}}} \right)$$