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Deterministic Finite Dynamical Systems

Definition:

▶ A deterministic, finite, discrete-time dynamical system is a
function mapping a finite set of states to itself.

▶ Represented as a functional digraph (up to an isomorphism):
a finite directed graph where each vertex has a unique
out-neighbor.
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Algebraic Operations on Functional Digraphs

Digraph A: vertex set V (A), edge set E (A).
Addition (A+ B):

▶ Disjoint union of functional digraphs A and B.

Multiplication (AB):

▶ Direct product of A and B.

▶ Vertex set V (AB) is the Cartesian product V (A)× V (B).

▶ Edge from (x , y) → (x ′, y ′), if : x → x ′ in A and y → y ′ in B.

Semiring Structure:

▶ The set of functional digraphs with these operations forms a
semiring.



Division Problem in Functional Digraphs

▶ Multiplicative Structure

▶ Division Problem:
▶ Given functional digraphs A and B, does A divide B?
▶ Exists a solution X to AX = B?

▶ Complexity:
▶ Problem is in NP.
▶ General case remains open.
▶ Better upper bounds under certain conditions.



Structure of Functional digraph

▶ Definition: A functional digraph A has every vertex with
exactly one outgoing edge.

▶ Components:
▶ Cyclic Part: Collection of disjoint cycles.

▶ Transient Part:
▶ Remaining structure after removing cycles.
▶ Disjoint union of out-trees.

We focus on the case: each graph be a collection of disjoint
cycles - called Sum of cycles



Divisors of Graphs as Sum of Cycles

▶ Objective:
▶ Investigate divisors of graphs that can be represented as a sum

of cycles.

▶ Focus Areas:
▶ Cycle Lengths as Powers of a Prime:

▶ Initial focus on cycles where lengths are powers of the same
prime number.

▶ Generalization Using Recurrence:
▶ Employ a recurrence method.
▶ Based on the number of distinct prime factors in cycles.



Sum of Cycles with One Prime Number
Ring of Polynomials on One Prime Number

Let X and Y be two sums of cycles. We define two operators,
called addition and product, as follows:
For sums of cycles:

X = x1C1 + x2C2 + · · ·+ xmCm,

Y = y1C1 + y2C2 + · · ·+ ykCk ,

Addition: The sum Z = X + Y is defined by

Z =
m∑
i=1

ziCi ,

where zi = xi + yi .



Multiplication of Cycles

Multiplication: The product Z = X · Y is defined by

Z =
∑

0≤i≤m, 0≤j≤k

xiyjCiCj ,

where
CiCj = gcd(i , j)Clcm(i ,j).

We denote by n(X ) the size of X , that means

n(X ) = x1 + 2x2 + · · ·+mxm.



Cycles with One Prime Number

Let X be a sum of cycles where the lengths are powers of the same
prime. We write X as:

X = x1C1 + xpCp + xp2Cp2 + · · ·+ xpmCpm .

The set N[p], with the operations of addition and multiplication,
forms a semiring over N.
Extension: the set Q[p], with the operations of addition and
multiplication, forms a ring over Q.



Algorithm to Check Divisors

Introduction to Divisors of Cycles

▶ Let B be a sum of cycles, each of length being a power of the
same prime p:

B = b1C1 + bpα1Cpα1 + bpα2Cpα2 + . . .+ bpαkCpαk

▶ Conditions:
▶ 0 = α0 < α1 < α2 < . . . < αk

▶ bpαi > 0 for i = 1, 2, . . . , k
▶ b1 ≥ 0

Key Question: What form must a divisor A of B take?



Form of Divisors
Lemma on Forms of A and X
▶ If B = A · X , then:

A = A∗ +
k∑

i=1

apαiCpαi , X = X∗ +
k∑

i=1

xpαiCpαi

▶ Where:

A∗ =

α1−1∑
j=0

apjCpj , X∗ =

α1−1∑
j=0

xpjCpj

▶ apj , xpj are non-negative integers.

Two Cases:
▶ If b1 ̸= 0:

A∗ = a1C1, X∗ = x1C1 with x1 =
b1
a1

▶ If b1 = 0:
A∗ = 0 or X∗ = 0

Note: X is called a quotient of B
A , different quotients X may exist.



Lemma: Form of A and X

For all 1 ≤ l ≤ k :

(a∗ +
k∑

i=1

apαiCpαi )(x∗ +
l∑

i=1

xpαiCpαi ) = b1 +
l∑

i=1

bpαiCpαi .

Special Case: If b1 ̸= 0, then a∗ = a1 and x∗ = x1.



Computing xpαi

In all cases:

a∗x∗ = b1

xpα1 =
1

pα1

(
b1 + pα1bpα1

a∗ + pα1apα1

− x∗

)
xpα2 =

1

pα2

(
b1 +

∑2
i=1 p

αibpαi

a∗ +
∑2

i=1 p
αi apαi

− b1 + pα1bpα1

a∗ + pα1apα1

)
· · ·

xpαk =
1

pαk

(
b1 +

∑k
i=1 p

αibpαi

a∗ +
∑k

i=1 p
αi apαi

−
b1 +

∑k−1
i=1 pαibpαi

a∗ +
∑k−1

i=1 pαi apαi

)
.



Uniqueness and Non-negativity of xpαi (for i = 2, . . . , k)

▶ xpαi =
Qi−Qi−1

pαi

uniquely determined and non-negative iff: condition (*):

Qi−1 =
b1 + pα1bpα1 + . . .+ pαi−1bpαi−1

a∗ + pα1apα1 + . . .+ pαi−1apαi−1

≡ n(B)

n(A)
mod pαi

Qi ≥ Qi−1

▶ Q1,Q2, . . . ,Qk satisfying (*): suitable sequence.
▶ Other Variables:

▶ Variables xj with j ≤ pα1 depend on a∗, apα1 , b1, bpα1 .
▶ There may be no solution, one solution, or multiple solutions

for these variables.



Number of solutions

Solve the First Equation

▶ If a∗ ̸= 0, then the solution is unique.

▶ If a∗ = 0, then all xpαi for i ≥ 2 are already determined. For
the first variables, solve the equation:

x1 + pxp + p2xp2 + . . .+ pα1−1xpα1−1 + xpα1pα1 =
bpα1

apα1

.

▶ There are s
(
bpα1

apα1
, p, α1

)
solutions, where s(n, p, k) is the

number of solutions of the equation:

x1 + pxp + p2xp2 + . . .+ pk−1xpk−1 + xpkp
k = n.



Theorem: Algorithm for Divisibility in Case of single prime

Theorem
Let B = b1C1 + bpα1Cpα1 + bpα2Cpα2 + . . .+ bpαkCpαk .
Let A be a sum of cycles. There exists an algorithm with a time
complexity of O(k2 + α1) to determine if A divides B. This
algorithm also describes all quotients X = B

A .



Example 1: Finding Solutions for X
Equation: AX = B

A = 2C3 + C9, B = 80C3 + 40C9

Solution:

▶ By Lemma 3, X is of the form:

X = x1C1 + x3C3 + x9C9

▶ System of equations:

x1 + 3x3 =
80

2
= 40,

x9 =
1

9

(
3× 80 + 9× 40

3× 2 + 9
− 800

2

)
= 0

▶ There are 14 solutions with x3 ranging from 0 to 13, satisfying:

x1 + 3x3 = 40

▶ X = x1C1 + x3C3



Example 2: Finding Solutions for Y
Equation: AY = B

A = 32 + 8C3 + 4C9, B = 576 + 704C3 + 192C9

Solution:

▶ By Lemma 3, Y is of the form:

Y = y1C1 + y3C3 + y9C9

▶ System of equations:

y1 =
576

32
= 18,

y1 + 3y3 =
576 + 3× 704

32 + 8× 3
= 48,

y9 =
1

9

(
576 + 3× 704 + 9× 192

32 + 8× 3 + 4× 9
− 48

)
= 0

▶ Unique solution: y1 = 18, y3 = 10

▶ Y = 18C1 + 10C3



General Sum of Cycles

Theorem
Let B be a general sum of cycles. Let A be a sum of cycles. There
exists an algorithm to determine whether A is a divisor of B. In
the affirmative case, the algorithm also describes all divisors X
such that A · X = B.



Semiring of Multi Variables

Definition: Let p1, p2, . . . , pk be k distinct prime numbers.
Define N[p1, p2, . . . , pk ] (or Q[p1, p2, . . . , pk ]) as the set of sums of
cycles X of the form:

X =
∑

0≤i1,i2,...,ik

xi1,i2,...,ikCp
i1
1

C
p
i2
2

. . .C
p
ik
k

where xi1,i2,...,ik are coefficients in N (or Q).

Operators: Addition and Multiplication are well-defined over these
sets.

Extension: The semiring N[p1, p2, . . . , pk , pk+1] can be viewed as:

N[p1, p2, . . . , pk ][pk+1]



Algorithm for m Primes

1. Determine the semiring of polynomials:
▶ Let p1, . . . , pm be the primes in the cycle lengths of B.
▶ Write B and A in N[p1, p2, . . . , pm].
▶ If m = 0 or m = 1, apply the algorithm for the single case.
▶ Otherwise, continue to Step 2.

2. If m ≥ 2 and the algorithm for m− 1 primes has been solved:
▶ Let k = m − 1, express B and A in N[p1, p2, . . . , pk ][p], where

p = pm.
▶ Find X such that B = A× X :

B = b0C1 +
∑
i

bpαi Cpαi

A = A∗ +
∑
i

apαi Cpαi , X = X∗ +
∑
i

xpαi Cpαi

with bi , ai , xi ∈ N[p1, p2, . . . , pk ].



Find the Suitable Sequence Qi

Challenge: The Qi may not be unique.

▶ Compute the quotient Qk = n(B)
n(A) in N[p1, p2, . . . , pk ], using

Algorithm for k primes.

Qk =
n(B)

n(A)
=

b1 + pα1bα1 + · · ·+ pαkbαk

a∗ + pα1aα1 + · · ·+ pαkaαk

.

▶ Let Sk be the set of all posible quotients Qk .

▶ For each i = k − 1, k − 2, . . . , 2, 1, find all suitable elements:

Qi =
b1 + pα1bpα1 + · · ·+ pαibpαi

a∗ + pα1apα1 + · · ·+ pαi apαi

.

▶ Check the suitable conditions:
▶ If there exists Qk in Sk such that Qi ≡ Qk mod pαi+1 , and
▶ If there exists Qi+1 marked by Qk such that Qi ≤ Qi+1.



Find the Suitable Sequence (continued)
1. Check the suitable conditions:

▶ If there exists Qk in Sk such that Qi ≡ Qk mod pαi+1 , and
▶ If there exists Qi+1 marked by Qk such that Qi ≤ Qi+1.

2. If Qi satisfies these two conditions, then mark Qi by Qk .

3. Add Qi to Si .

4. Delete all elements in Sk that are not used to make any Qi in
this step.

From suitable sequences to solutions.

▶ After Step 2.2, we obtain S1, containing all Q1 which have a
suitable list (Q1,Q2,Q3, . . . ,Qk−1,Qk).

▶ For each suitable list (Q1,Q2,Q3, . . . ,Qk−1,Qk), we have a
solution:

∀i ∈ {1, 2, . . . , k}, xpαi =
Qi − Qi−1

pαi
,

which are in N[p1, p2, . . . , pk ].



Example: Find X such that A · X = B

Given:

B = 72C8 + 80C12 + 48C24 + 40C36 + 4C72,

A = 4C8 + 2C12 + C36.

Consider p = 3, q = 2, and B ∈ N[3][2].
Express B and A as:

B = (80C3 + 40C9)C22 + (72 + 48C3 + 4C9)C23 ,

A = (2C3 + C9)C22 + 4C23 .

Form of X :
X = y1C1 + y2C2 + y4C22 + y8C23 ,

where y1, y2, y4, y8 ∈ N[3].



Example (continued): Using the Algorithm

Using the algorithm:

y1 + 2y2 + 4y4 =
80C3 + 40C9

2C3 + C9
,

y8 =
1

8

(
576 + 704C3 + 192C9

32 + 8C3 + 4C9
− 80C3 + 40C9

2C3 + C9

)
.

First compute:

576 + 704C3 + 192C9

32 + 8C3 + 4C9
= 18C1 + 10C3.

Then:

y1 + 2y2 + 4y4 =
80C3 + 40C9

2C3 + C9
= r1C1 + r3C3,

with r1 + 3r3 = 40.



Example (continued): Solutions

Compute y8:

y8 =
1

8
(18C1 + 10C3 − (r1 + r3C3)) =

18− r1
8

+
10− r3

8
C3,

where r1 + 3r3 = 40.
Since y8 must have non-negative integer coefficients:

r3 = 10, r1 = 10, y8 = 1.

Number of solutions:

y1+2y2+4y4 = 10C1+10C3, f (10, 2, 2) = 12 ⇒ 144 solutions.

Example solutions:

▶ y4 = C1 + C3, y2 = C1, y1 = 4C1 + 6C3

▶ y4 = 2C1 + C3, y2 = 2C3, y1 = 2C1 + 2C3

▶ y4 = 2C1, y2 = 5C3, y1 = 2C1



Complexity of Algorithms. Algorithm for Single Prime

▶ Step 1: Takes O(1) time.

▶ Step 2: For each i , it takes O(k) time.

▶ Step 3: To describe all solutions, it takes O(1) time.

Total Complexity: O(k2) time for a single prime.

Number of Solutions: s
(
bpα1

apα1
, p, α1

)
,

where s(n, p, k): number of solutions of:

x1 + pxp + p2xp2 + . . .+ pk−1xpk−1 + xpkp
k = n.

Time to list Solutions: k · s(n, p, k) time.



Current and Future Tasks:

▶ Analyze algorithm complexity for the general case.

▶ Calculate the number of solutions.

▶ Find divisors of a given sum of cycles.

▶ Determine when X is a prime.

▶ Determine when X is irreducible.

Upper Bound for s(n, p, k)

▶ A well-studied function initiated by Mahler.

▶ Focus on finding the upper bound.



Thank you for your attention!



Theorem and Algorithm

Theorem 1: There exists an algorithm with a time complexity of
O(k2 + α1) to determine if A divides B, and to describe all
quotients X = B

A .
Algorithm Steps:

▶ Step 1: Handle the first condition

▶ Step 2: Compute all xpi for i ≥ 1

▶ Step 3: Solve the equation



Algorithm Complexity

Step 1: O(1) time.
Step 2: For each i , takes O(k) time.
Step 3: Describing all solutions takes O(1) time.

There are s
(
bpα1

apα1
, p, α1

)
solutions. Listing all solutions takes

k · s(n, p, k) time.



Lemma: Form of A and X

Lemma
If B = A · X , then:

A∗X∗ = b1C1

(a∗ + apα1Cpα1 )(x∗ + xpα1Cpα1 ) = b1 + bpα1Cpα1

(a∗ + apα1Cpα1 + apα2Cpα2 )(x∗ + xpα1Cpα1 + xpα2Cpα2 ) = b1 + bpα1Cpα1 + bpα2Cpα2

· · ·



Lemma: Computing X

If B = A · X then

A∗X∗ =b1C1

(a∗ + apα1Cpα1 )(x∗ + xpα1Cpα1 ) =b1 + bpα1Cpα1

(a∗ + apα1Cpα1 + apα2Cpα2 )(x∗ + xpα1Cpα1 + xpα2Cpα2 ) =b1 + bpα1Cpα1 + bpα2Cpα2

· · ·
(a∗ + apα1Cpα1 + . . .+ apαk Cpαk )(x∗ + xpα1Cpα1 + . . .+ xpαk Cpαk ) =b1 + bpα1Cpα1 + . . .+ bpαk Cpαk .

If b1 ̸= 0, then it follows that a∗ = a1 and x∗ = x1.
In all cases:

a∗x∗ =b1

(a∗ + pα1apα1 )(x∗ + pα1xpα1 ) =b1 + pα1bpα1

(a∗ + pα1apα1 + pα2apα2 )(x∗ + pα1xpα1 + pα2xpα2 ) =b1 + pα1bpα1 + pα2bpα2

· · ·
(a∗ + pα1apα1 + . . .+ pαk apαk )(x∗ + pα1xpα1 + . . .+ pαk xpαk ) =b1 + pα1bpα1 + . . .+ pαk bpαk .



Computing X

Or equivalently,

a∗x∗ = b1

xpα1 =
1

pα1

(
b1 + pα1bpα1

a∗ + pα1apα1

− x∗

)

xpα2 =
1

pα2

(
b1 + pα1bpα1 + pα2bpα2

a∗ + pα1apα1 + pα2apα2

−
b1 + pα1bpα1

a∗ + pα1apα1

)
· · ·

xpαi =
1

pαi

(
b1 + pα1bpα1 + . . .+ pαi bpαi

a∗ + pα1apα1 + . . .+ pαi apαi

−
b1 + pα1bpα1 + . . .+ pαi−1bpαi−1

a∗ + pα1apα1 + . . .+ pαi−1apαi−1

)
· · ·

xpαk =
1

pαk

(
b1 + pα1bpα1 + . . .+ pαk bpαk

a∗ + pα1apα1 + . . .+ pαk apαk

−
b1 + pα1bpα1 + . . .+ pαk−1bpαk−1

a∗ + pα1apα1 + . . .+ pαk−1apαk−1

)
.


	General Sum of Cycles

